Grade 8 - Book A

(Teacher's Guidelines)

(Revised CAPS edition)

CONTENTS:

		<u>Page</u> :
A1.	Integers	3
A2.	Number patterns	53
A3.	Exponents	69
A4.	Introduction to Algebra	79
A5.	Linear equations	127

This book was drawn up and processed by E.J. Du Toit in 2013.

Contact number: 086 618 3709 (Fax)

Copyright © 2013. All rights reserved.

No part of this publication may be reproduced by any means without the prior written permission of the author.

ISBN 978-0-958443-31-9

Chapter A1

Integers

A1.1 Number systems and properties of integers:

Exercise 1:

Complete: * Natural numbers: $N = \{ 1, 2, 3, 4, --- \}$

* Whole numbers
$$N_0 = \{ 0, 1, 2, 3, --- \}$$

* Integers:

$$Z = \{ ---; -2; -1; 0; 1; 2; --- \}$$

The integers are expanded to include the fractions:

Rational numbers (Q): Include all fractions which can be written as $\frac{a}{b}$, with a and b as integers and $b \neq 0$. This includes all finite and recurring decimal fractions.

E.g.
$$\frac{1}{3}$$
; $0,\dot{7}$; $-3\frac{5}{8}$; 2,34; $\sqrt{25}$; 9; $\sqrt[3]{27}$ etc.

Irrational numbers (Q'): Includes all infinite and non-recurring decimal fractions.

E.g. 3,68463.....;
$$\pi$$
; $\sqrt{10}$; $\sqrt[3]{4}$ etc.

Real numbers (R) consist of all rational and irrational numbers in union: $\mathbb{Q} \cup \mathbb{Q}'$

Non-real numbers for example are: $\sqrt{-4}$: $\sqrt{-12}$ etc.

$$\sqrt[4]{-8}$$
 and $\sqrt[4]{-243}$ however, are real numbers, because $\sqrt[4]{-8} = -2$ and $\sqrt[4]{-243} = -3$.

Properties of 1 and 0:

*
$$m \times 0 = 0$$

*
$$m \times 1 = m$$

$$* 0 \div m = 0$$

*
$$m \div 1 = m$$

*
$$m \div 0 = \text{undefined}$$

Identity elements:

- * 0 is the identity element of addition, because m + 0 = m
- * 1 is the identity element of multiplication, because $m \times 1 = m$

Inverse:

- * The sum of a number and its additive inverse is 0. E.g. 3 is the additive inverse of -3, because 3 + (-3) = 3 - 3 = 0
- * The multiplicative inverse (reciprocal) is the number multiplied with a certain number with a result of 1. E.g. the multiplicative inverse of 3 is $\frac{1}{3}$, because $3 \times \frac{1}{3} = \frac{1}{1} \times \frac{1}{3} = 1$

Other properties:

- * Commutative operation: $m \times n = n \times m$ or m + n = n + m
- * Associative operation: $(m \times n) \times p = m \times (n \times p)$ or (m+n) + p = n + (m+p)
- * Distributive operation: $p \times (m+n) = p \times m + p \times n$ or $p \times (m-n) = p \times m p \times n$

			_	•		
_	_					
		 .				
						
				_		
			_			
				.		·
						
						·
	-				-	
						
				_		
		_				
						

A1.2 Rules for divisibility:

Divisor:	Rules for divisibility:
2	Last digit must be an even number or a 0.
3	Sum of all the digits must be divisible by 3.
4	Two last digits must be divisible by 4.
5	Last digit must be 5 or 0.
6	Rules for divisibility for 2 and 3 must apply.
8	Last three digits must be divisible by 8.
9	Sum of all the digits must be divisible by 9.
10	Last digit must be 0.
11	Calculate the sums of the alternate digits. The difference between these sums must be 0, or it must be divisible by 11.

E.g. 1 Determine whether 10 527 is divisible by the numbers in the above table:

- 2: NO, because the number (10 527) does not end on an even number.
- 3: YES, because the sum of the digits, 1+0+5+2+7=15 is divisible by 3.
- 4: NO, because 27(10 527) is not divisible by 4.
- 5: NO, because the number does not end on a 5 or a 0.
- 6: NO, because the rule of divisibility for 2 does not apply.
- 8: NO, because the last three digits, 527, are not divisible by 8.
- 9: NO, because the sum of the digits viz. 1+0+5+2+7=15 is not divisible by 9.
- 10: NO, because the last digit is not 0.
- 11: YES, because the difference between 1+5+7=13 and 0+2=2 with 13-2=11.

Exercise 2:	Date:
Determine whether the following numbers are divisible	by the numbers in the above table:
(1) 1275: 2: No, end on uneven.	8: No not divisible by 4.
3: Yes, 1+2+7+5=15 oct	9: No, 1+2+7+5=15 ord 15 is
15 divisible by 3.	not divisible by 9.
4: No, 75 not divisible	10: No, last digit not o.
by 4.	11: No (1+7) - (2+5) = 8-7=1
5: Yes, end on 5.	and that is not a or 11.
6: No not divisible by 2.	
(2) 2772: <u>2: Yes, ends on even.</u>	6: Yes, divisible by 2 and 3.
•	8: No, 772 not divisible
3: Yes, 2+7+7+2=18 and 18 divisible by 3.	
	9: Yes, 2+7+7+2=18 and
4: yes, 72 divisible	
- by 4.	18 is divisible by 9.
5: No, do not end on	11: (les (2+7)-(7+2)=0

 _		
 		<u> </u>
 <u> </u>		
_		· · · · · · · · · · · · · · · · · · ·
 		
	-	
 	_	
 _		
 _		

(3) 7920: 2: yes, ends on o.	8: Yes 920 is divisible
3: yes, 7+9+2+0=18 and	by 8.
18 divisible by 3.	9: yes 7+9+2+0=18 and
	18 divisible by 9.
5: Yes enck on o.	10: Yes, ends on o.
6: yes, divisible by	11: yes (7+2)-(9+0)=0.
2 and 3.	,

② A certain number is divisible by 2, 3, 5 and 11. This number is not divisible by 8 and 9, but it is divisible by 4. Determine the smallest number that meets these conditions.

A1.3 Factors:

E.g. 2 The factors of 10 are: $F_{10} = \{1 ; 2 ; 5 ; 10\}$

Ev.	ercise	マ・	
1 / // 1		- 1 -	

Date: _____

Complete:

(1)
$$F_{20} = \frac{\{1; 2; 4; 5; 10; 20\}}{2}$$

(2)
$$F_{16} = \{ 1, 2, 4, 8, 16 \}$$

$$(3) \quad F_5 \quad = \quad \underbrace{\{ \ 1 \ \cdot \ 5 \ \}}_{}$$

(4)
$$F_{32} = \{1, 2, 4, 8, 16, 32\}$$

(5)
$$F_{15} = \{1:3:5:15\}$$

(6)
$$F_{28} = \{1:2:4:7:14:28\}$$

(7)
$$F_{12} = \{1, 2, 3, 4, 6, 12\}$$

$$(8) \quad F_7 \quad = \quad \underbrace{\left\{ \ l \cdot \ 7 \right\}}_{}$$

(9)
$$F_{36} = \frac{\{1, 2, 3, 4, 6, 9, 12, 18, 36\}}{\{1, 2, 3, 4, 6, 9, 12, 18, 36\}}$$

$$(10) \quad \mathbf{F}_{11} = \underbrace{\left\{ \begin{array}{cc} & & \\ & & \end{array} \right\}}_{1}$$

	_
	
	
	

A1.4	Multi	ples	

E.g. 3 The multiples of 10 are:	$M_{10} = \{10 : 20 :$	30;}
---------------------------------	------------------------	------

Exercise 4:

Date: _____

Complete:

(1)
$$M_6 = \frac{\{6, 12, 18, \dots\}}{}$$

(2)
$$M_{20} = \frac{[20.40.60.--]}{}$$

(3)
$$M_7 = \frac{\{7, 14, 21, \dots\}}{}$$

$$(4) \quad M_{12} = \underbrace{\{12; 24; 36; \dots\}}_{}$$

(5)
$$M_{36} = \frac{\{36; 72', 108; ---\}}{}$$

(6)
$$M_9 = \frac{\{9,18,27,\dots\}}{}$$

(7)
$$M_{35} = \{35, 70, 105, \dots\}$$

(8)
$$M_{16} = \frac{\{16, 32, 48, \dots\}}{}$$

(9)
$$M_{11} = \frac{\{11, 22, 33, \dots \}}{(11, 22, 33, \dots)}$$

(10)
$$M_3 = \frac{3 \cdot 6 \cdot 9 \cdot - 3}{3 \cdot 6 \cdot 9 \cdot - 3}$$

_		_						
☺	Determine	the	multiples	of 6	which	are also	factors	of 120

[6,12,34,30,60,120]

A1.5 Prime numbers and compound numbers:

Exercise 5:

Date: _____

Complete:

(1) The definition of a prime number is: all natural numbers with any 2 factors - 1 and the number itself.

(2) The smallest prime number is: 2

(3) The only even prime number is: 2

(4) The definition of a compound number is: all natural number with more than 2 factors.

(5) Which natural number is <u>neither</u> a prime number nor a compound number? <u>1</u>

	 		
	 		
	 _		
	 	-	_
	 		
	-		
	 ,		
 	 		
_	 		
	 _		
		<u> </u>	

(6) Which natural numbers smaller than 50, are prime numbers?

(Do the following: Encircle 2; 3; 5 and 7 and cross out all the multiples of 2; 3; 5; and 7.

The numbers which are left will be the prime numbers. Remember to cross out 1 as well!)

+	2	3	4	(5)	-6	7 (7) 27 (3) (4)	-8-	-9	-10
\bigcirc	12	(13)	14	15	16	(7)	18	(19)	20
21	22	23	24	25	26	27	28	(29)	-30
3)	32	33	34	35	36	37)	38	39	40
4 1)	42	(43)	44	45	46	47)	48	49	<i>5</i> 0

... The prime numbers smaller than 50 are: $\{\frac{2'3'5'7'11'13'77'19'23'29'31'37'41'43'47}{11'13'77'19'23'29'31'37'41'43'47}\}$

A1.6 Prime factors:

E.g. 4 The factors of 6 are: $F_6 = \{1:2:3:6\}$

:. The prime factors of 6 are: 2 and 3. (In other words they are factors which are prime numbers)

E.g. 5 The factors of 20 are: $F_{20} = \{1; 2; 4; 5; 10; 20\}$

:. The prime factors of 20 are: 2 and 5.

E.g. 6 Determine the prime factors of 60: 2
$$\begin{vmatrix} 60 \\ 2 \\ 30 \end{vmatrix}$$
 \vdots $60 = 2 \times 2 \times 3 \times 5$ $= 2^2 \times 3 \times 5$ $= 2^2 \times 3 \times 5$ Exercise 6: Date:

Determine the prime factors of:

32 32 (4) 2 44
2 16 2 22
2 4 11 11
32 =
$$2^{5}$$
 $44 = 2^{2} \times 11$

$$\begin{array}{c|cccc}
(9) & 2 & 18 \\
3 & 9 \\
3 & 3 \\
& & & \\
& & & \\
18 = 2 \times 3
\end{array}$$

$$\begin{array}{c|cccc}
2 & 168 \\
2 & 84 \\
2 & 42 \\
3 & 21 \\
7 & 7 \\
168 = 2^3 \times 3 \times 7
\end{array}$$

-			
		-	_
	_		
			
	<u> </u>		
		·	
		·	
			··
		_	
	_		

A1.7 LCM and HCF:

LCM = Lowest common multiple. HCF = Highest common factor.

E.g.7 Determine the LCM of 8; 12 and 20 [First determine the prime factors!]

$$8 = 2 \times 2 \times 2$$

$$12 = 2 \times 2 \times 3$$

$$20 = 2 \times 2 \times 5$$

$$\therefore LCM = 2 \times 2 \times 2 \times 3 \times 5 = 120$$

E.g.8 Determine the HCF of 36 and 60. [First determine the prime factors!]

$$36 = 2 \times 2 \times 3 \times 3$$

$$60 = 2 \times 2 \times 3 \times 5$$

$$\therefore HCF = 2 \times 2 \times 3 = \underline{12}$$

Exercise 7:

Date: _____

(1) Determine the HCF of the following by finding the prime factors first:

(a)
$$14 = 2 \times 7$$

$$21 = 3 \times 7$$

$$35 = 5 \times 7$$

(b)
$$27 = 3 \times 3 \times 3$$

$$45 = 3 \times 3 \times 5$$

$$72 = 2 \times 2 \times 2 \times 3 \times 3$$

(c)
$$12 = 2 \times 2 \times 3$$

$$\therefore HCF = 2 \times 2 \times 3$$

(d)
$$38 = 2 \times 19$$

$$57 = 3 \times 19$$

 $168 = \underbrace{2 \times 2 \times 2 \times 3 \times 7}_{}$

$$95 = \underline{5 \times 19}$$

(e)
$$10 = 2 \times 5$$

$$15 = 3 \times 5$$

$$105 = 3 \times 5 \times 7$$

-		
	· · · · · · · · · · · · · · · · · · ·	
 	<u> </u>	
	<u> </u>	
-		
		<u> </u>
		_
-		

(2) Determine the LCM of the following by finding the prime factors first:

(a)
$$6 = 2 \times 3$$

$$12 = 2 \times 2 \times 3$$

$$18 = 2 \times 3 \times 3$$

 $\therefore LCM = \underline{2 \times 3 \times 2 \times 3}$

(b)
$$8 = 2 \times 2 \times 2$$

$$20 = 2 \times 2 \times 5$$

$$\therefore LCM = \underline{2 \times 2 \times 2 \times 5}$$

= 40

= 36

$$6 = 2 \times 6$$

$$= \underline{66}$$

$$\therefore LCM = \underline{7 \times 3 \times 7}$$

$$49 = 7 \times 7$$

(e)
$$3 = 3$$

(d) 21 = 3x7

$$9 = 3 \times 3$$

$$12 = \underbrace{2 \times 2 \times 3}_{=}$$

$$\therefore LCM = \underbrace{3 \times 2 \times 2 \times 3}_{45} \times 5$$

$$60 = \underbrace{2 \times 2}_{\times} \times \underbrace{3 \times 5}_{\times}$$

$$(f) \quad 15 \quad = \quad \underline{3 \times 5}$$

$$45 = 3 \times 3 \times 5$$

$$270 = 2 \times 3 \times 3 \times 3 \times 5$$

(3) Determine the LCM and the HCF:

$$48 = 2 \times 2 \times 2 \times 3$$

$$56 = 2 \times 2 \times 2 \times 7$$

$$\therefore LCM = 2x2x2 \times 2 \times 3 \times 7$$

			
			-
	·		
-			
			-
		<u>_</u>	
	 -		
			_
		 :	

$$24 = 2 \times 2 \times 2 \times 3$$

$$36 = 2 \times 2 \times 3 \times 3$$

$$18 = 2 \times 3 \times 3$$

$$\therefore LCM = 2 \times 3 \times 2 \times 3 \times 2 = 72 \text{ cm}^{2}$$

A1.8 Square roots and cube roots:

E.g.9 Determine the following by using prime factors:

(a) $\sqrt{784}$ (b) $\sqrt[3]{3375}$

∴
$$784 = 2 \times 2 \times 2 \times 2 \times 7 \times 7$$

 $= 2^2 \times 2^2 \times 7^2$
∴ $\sqrt{784} = 2 \times 2 \times 7$
 $= 28$
∴ $\sqrt{3375} = 3 \times 3 \times 5 \times 5 \times 5$
 $= 3^3 \times 5^3$
∴ $\sqrt{3375} = 3 \times 5$
 $= 15$

Exercise 8:

Date:

2 576

Calculate: (by using prime factors)

(1)
$$\sqrt{576} = \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3}$$

$$= \sqrt{2^2 \times 2^2 \times 2^2 \times 2^2 \times 3^2}$$

$$= 2 \times 2 \times 2 \times 3$$

$$= 24$$

$$= 24$$

$$= 3 3$$

$$= 3$$

<u> </u>					
	·	_			
	<u></u>				
 -					
 					_
 _					
		-		<u></u>	
	<u> </u>				
 			_	_	
	-				
					<u></u>
 					_
 			 .		

$$(2) \quad \sqrt[3]{343} = \sqrt[3]{7 \times 7 \times 7}$$

$$= \sqrt[3]{7}$$

$$= \sqrt[3]{7}$$

(3)
$$\sqrt{225} = \sqrt{3 \times 3 \times 5 \times 5}$$

$$= \sqrt{3^2 \times 5^2}$$

$$= 3 \times 5$$

$$= 15$$

$$(5) \quad \sqrt[3]{1000} = \sqrt[3]{2 \times 2 \times 2 \times 5 \times 5 \times 5}$$

$$= \sqrt[3]{2^3 \times 5^3}$$

$$= 2 \times 5$$

$$= 10$$

$$(7) \quad \sqrt[3]{729} = \sqrt[3]{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}$$

$$= \sqrt[3]{3^3 \times 3^3}$$

$$= 3 \times 3$$

$$= 9$$

	_		_		
					•
	_				
					-
		_			
			_		
					<u> </u>
					_
			<u> </u>		
				_	
	_				
			<u>_</u>		
				_	
	-				
	_				_
		_			
			-		