Grade 11 - Book A

(CAPS Edition)

CONTENTS:

	Page:
A1. Number systems and exponents	3
A2. Algebraic expressions, equations and inequalities	27
A3. Number patterns	103

This book was compiled and processed by E.J. Du Toit in 2008. Caps edition in 2012.

Contact number: 086 618 3709 (Fax!)

Copyright 2008. All copyrights reserved. No part of this publication may be reproduced in any form; unless written consent was obtained.

ISBN 978-1-919957-68-5

	
· · · · · · · · · · · · · · · · · · ·	
<u> </u>	

Chapter A1

Number systems and exponents

A1.1 Number systems:

Exercise 1:	Date:
(1) Complete: * Natural numbers: № =	
* Whole numbers: $N_0 =$	
* Integers: \mathbb{Z} =	
* Rational numbers: $\mathbb{Q} =$	
* Real numbers: R =	
(2) Write three examples of Ir	rational numbers:
 (3) Consider: x(x - 6)(x² - Solve for x and write the (a) irrational roots. (b) natural roots. 	$5)(2x^2 + x - 3) = 0.$ value(s) of x for which the solution of the equation will have: (c) integral roots.

(4) Complete the following diagram which presents the system of real numbers:

	-	_	
		-	
	_		
	 .		
			
	* ··	-	
		_	
	-		
	<u>-</u>		
	_		
		_	
		- , -	
			_
			
		<u>—</u>	
	<u> </u>		
			_

A1.2 Non-Real numbers:

Examples of non-real numbers: $\sqrt{-2}$; $\sqrt{-9}$ or $\sqrt[3]{-5}$ But not $\sqrt[3]{-8}$, because $-2 \times -2 \times -2 = -8$ $\therefore \sqrt[3]{-8} = -2$

Exercise	. 7.
EXCICI2:	<u> </u>

Date:

(1) Determine whether the following numbers are real or non-real. If real, indicate whether the number is rational or irrational:

	_
(a)	1

(b)
$$-\sqrt{3}$$

(d)
$$\sqrt{-16}$$

(e)
$$0.3$$

(f)
$$\frac{1}{3}$$

(g)
$$\sqrt[3]{-125}$$

(h)
$$1 + \sqrt{9}$$

(i)
$$\sqrt{(-2)^3}$$

(2) State whether the following statements are true or false:

(a) The product of two integers is always an integer again.

(a) The product of two integers is always all integer again.

(b) The product of two irrational numbers is always an irrational number. _____

, ,	10 1 1	<i>[</i>	
(C)	IT m is a natural number,	$\sqrt{4} m$ will also be a natural number.	

(d) The difference between two rational numbers is always a rational number.

(e) The quotient of a rational number and an irrational number will

always be rational.

(3) For which values of x will the following statements be: (i) undefined (ii) non-real

(b) $\sqrt{x-1}$:

(c) $\frac{\sqrt{x}}{x+2}$:

(4) Given: $P = \sqrt[4]{3y} - 1$. To which of the following numbers system(s) will P belong if: [Number systems: \mathbb{N} ; \mathbb{N}_0 ; \mathbb{Z} ; \mathbb{Q} ; \mathbb{Q} or \mathbb{R} ']

(a)
$$y = \frac{1}{3}$$

(b)
$$y = -1$$

(c)
$$y = 5$$

	
	_
	-
	<u>. </u>
	
	<u>.</u>
	
	
-	·-

A1.3 Representation of real numbers:

As already seen in the previous grades, the real numbers can be represented by using on of the following ways:

- (a) Interval notation.
- (b) On a number line.
- (c) As an inequality in set builder notation. Remember the following symbols:
 - $\cup \rightarrow$ the union of two or more intervals or sets.

	_
Exercise	-4
LACICISC	J

_		
Date:		
I late.		
Daw.		

Complete the following table:

	Carlo della management	T.4	N. 1. C
<u> </u>	Set builder notation:	Interval notation:	Number line:
(1)	$\{x/-1 < x \le 2 \ ; x \in \mathbb{R} \}$		
(2)		$x \in [-2;5]$	
(3)		$y \in (-\infty;3]$	
(4)			-4 -3 -2 -1 0 1
(5)	$\{y \mid y \ge 3 \; ; y \in \mathbb{N} \}$		
(6)		$m \in (0;4]$	
(7)			-5 -4 -3 -2 -1 0
(8)	$\{m: m \leq 6; m \in \mathbb{R}\}$		
(9)	$\{x/-1 < x < 2; x \in \mathbb{Z}\}$		
(10)		$x \in (-1; \infty)$	

			_	
				
	-		<u></u>	
			_	
	·			
				
		 -		
	-		_	
				
			-	
				
				
			_	
			-	
				

- (1) Give a synonym for "non-real numbers":
 - (2) Do some investigation regarding complex numbers and the numbers it contain:

A1.4 Exponents and surds:

A1.4.1 Exponents:

Basic exponential laws and properties:

$$(1) x^m \times x^n = x^{m+n}$$

$$(2) \quad x^m \div x^n = x^{m-n}$$

$$(3) \quad \left(x^{m}\right)^{n} = x^{mn}$$

(4)
$$(xy)^m = x^m y^m$$
 or $\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$

(5)
$$x^0 = 1$$

$$(6) \quad x^{-m} = \frac{1}{x^m}$$

(7)
$$x^{\frac{m}{n}} = \sqrt[n]{x^m}$$
 $(m, n \in \mathbb{Z} \text{ and } n > 0 \text{ with } n \neq 1)$

E.g.1 Simplify and write your answer as a positive exponent:

(a)
$$\frac{\left(x^3 \cdot y^{-2}\right)^2}{x^3(xy)^3} = \frac{x^6 \cdot y^{-4}}{x^3 \cdot x^3 \cdot y^3} = \frac{x^6 \cdot y^{-4}}{x^6 \cdot y^3} = x^{6-6} \cdot y^{-4-3} = x^0 \cdot y^{-7} = \frac{x^0}{y^7} = \frac{1}{y^7}$$

(b)
$$\sqrt{x} \times x^{\frac{1}{4}} \div x^{\frac{1}{4}} = x^{\frac{1}{2}} \times x^{\frac{1}{3}} \div x^{\frac{1}{4}} = x^{\frac{1}{2} + \frac{1}{2} - \frac{1}{4}} = x^{\frac{6 + 4 - \frac{3}{2}}{12}} = x^{\frac{7}{12}}$$

(c)
$$\frac{25^{n+1} \cdot 10^{n}}{8^{n-1} \cdot 5^{3n} \cdot (2^{-1})^{2n}} = \frac{\left(5^{2}\right)^{n+1} \cdot \left(2 \times 5\right)^{n}}{\left(2^{3}\right)^{n-1} \cdot 5^{3n} \cdot 2^{-2n}}$$
$$= \frac{5^{2n+2} \cdot 2^{n} \cdot 5^{n}}{2^{3n-3} \cdot 5^{3n} \cdot 2^{-2n}} = \frac{5^{3n+2} \cdot 2^{n}}{2^{n-3} \cdot 5^{3n}}$$
$$= 5^{3n+2-3n} \cdot 2^{n-m-3j} = 5^{2} \cdot 2^{n-n+3} = 5^{2} \cdot 2^{3} = 200$$

(d)
$$\frac{2^{x} - 2^{x+1}}{2^{x-1} + 2^{x}}$$

$$= \frac{2^{x} - 2^{x} \cdot 2^{1}}{2^{x} \cdot 2^{-1} + 2^{x}}$$

$$= \frac{2^{x} (1 - 2^{1})}{2^{x} (2^{-1} + 1)} = \frac{1 - 2}{\frac{1}{2} + 1} = -1 \div \left(\frac{1 + 2}{2}\right) = -1 \div \frac{3}{2} = -1 \times \frac{2}{3} = \frac{-2}{3}$$

(e)
$$\frac{x - x^{\frac{1}{2}} - 6}{x - 4} = \frac{\left(x^{\frac{1}{2}} - 3\right)\left(x^{\frac{1}{2}} + 2\right)}{\left(x^{\frac{1}{2}} - 2\right)\left(x^{\frac{1}{2}} + 2\right)} = \frac{\left(x^{\frac{1}{2}} - 3\right)}{\left(x^{\frac{1}{2}} - 2\right)}$$

	· · · · · · · · · · · · · · · · · · ·
-	····
	-
	-
,	
 	
<u> </u>	

		4
HVA	rcise	4
1400	10100	т.

Date:_____

Simplify, without using a calculator: (Write answers as positive exponents!)

(1)
$$\left(125x^6\right)^{\frac{1}{3}}$$

(2)
$$\left(x^{\frac{1}{2}} - 2\right)^2$$

(3)
$$\sqrt[3]{-8x^9y^{-3}}$$

(4)
$$3y^{\frac{1}{2}} \div (3y)^{\frac{-1}{2}}$$

(5)
$$(0.25m^{\frac{1}{4}})^2$$

(6)
$$\left(x^{\frac{1}{2}} + 4\right)\left(x^{\frac{1}{4}} - 2\right)\left(x^{\frac{1}{4}} + 2\right)$$

(7)
$$\frac{x^{\frac{1}{2}} \cdot \sqrt{x^3}}{x^{\frac{1}{3}}}$$

(8)
$$\left(\frac{-12 x^4 y^4 z}{-3 x^2 z^3} \right)^{\frac{1}{2}}$$

 $(9) \qquad \frac{m^{-2} - 3}{m^{-3} - 3m^{-1}}$

(10)
$$\frac{\left(9x^{\frac{2}{3}}y^{-4}\right)^{\frac{-3}{2}}}{3xy}$$

			
···			
-			
			
		_	
			
			_
		<u> </u>	
		<u> </u>	
		_	

(11)	$(x + y)^{-1}$
(11)	$x^{-1} - y^{-1}$

$$(12) \qquad \frac{2^{2n} - 3 \cdot 2^n + 2}{2^n - 2}$$

 $(13) \qquad \left(m^{\frac{2}{3}} + n^{\frac{1}{3}}\right)^2$

(14) $\left(a^{\frac{1}{3}} - 5\right)\left(5 + a^{\frac{1}{3}}\right)$

(15) $\sqrt[3]{(0,125)^{-2}} + (125^2)^{\frac{1}{3}}$

(16) $\frac{12^{n+1} \cdot 9^{n-2}}{18^{2n-1} \cdot 3^{2n}}$

 $\frac{5^{n+1} \cdot 25^{n-1}}{125^{n-2}}$

 $(18) \qquad \frac{3^{2n} - 9^{n+1}}{3^{2n}}$

				<u> </u>	
	.				
			_		
				<u>-</u>	
					
					 -
					
		·-			
					_
	<u>.</u>				
			_	_	
			_	_	
				_	
		_	_		
					_
			·		
-					
			_	_	
	<u>-</u>				
			-		_

(19)
$$\frac{3 \times 2^{x} + 2^{x+1}}{5 \times 2^{x}}$$

(20)
$$\frac{3^2 \cdot 5^{-6} \cdot 4^{n-1}}{2^{2n+1} - 2^{2n}}$$

 $\frac{3^{-2x} \cdot 36^{x+1} \cdot 3}{4^{x-1} \cdot (0,5)^2}$ (21)

(22) $\frac{5 \cdot 5^{-y-1} + 5^{-2y} \cdot 5^y}{3 \cdot 5^{-y} - 5^{1-y}}$

A1.4.2 Surds:

Remember: $x^{\frac{m}{n}} = \sqrt[n]{x^m}$ $(m, n \in \mathbb{Z} \text{ and } n \ge 2)$

E.g.2 Simplify: (a)
$$3\sqrt{2} + 7\sqrt{2} = 10\sqrt{2}$$

(b)
$$\sqrt{8} \times \sqrt{2} = \sqrt{8 \times 2} = \sqrt{16} = 4$$

(c)
$$(\sqrt{3} + 1)^2 = (\sqrt{3} + 1)(\sqrt{3} + 1) = 3 + 1\sqrt{3} + 1\sqrt{3} + 1$$

= $4 + 2\sqrt{3}$

			 .		
				<u> </u>	
-					
	_				
					_
			<u></u>		
	=				
		 -			
				_	
				-	
				_	
		-		_	
	-				
	-			_	
			-		
					
		_			_
	-				
					
				=	_
					
		<u>_</u>			
		_ _			
				_	
-					
					

(d)
$$\sqrt{18} + \sqrt{50} - 2\sqrt{8}$$

= $\sqrt{9 \times 2} + \sqrt{25 \times 2} - 2\sqrt{4 \times 2}$
= $\sqrt{9} \times \sqrt{2} + \sqrt{25} \times \sqrt{2} - 2\sqrt{4} \times \sqrt{2}$
= $3\sqrt{2} + 5\sqrt{2} - 2 \times 2\sqrt{2}$
= $8\sqrt{2} - 4\sqrt{2}$
= $4\sqrt{2}$

E.g.3 Rationalize the denominator:
$$\frac{2 + \sqrt{8}}{\sqrt{2}}$$

$$= \frac{2 + \sqrt{8}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{2 \times \sqrt{2} + \sqrt{8} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}$$

$$= \frac{2\sqrt{2} + \sqrt{16}}{\sqrt{4}} = \frac{2\sqrt{2} + 4}{2} = \frac{2\sqrt{2}}{2} + \frac{4}{2} = \sqrt{2} + 2$$

Exercise 5:	Date:

(1) Simplify, without using a calculator:

(a)
$$(\sqrt{3} - 2)(\sqrt{3} + 2)$$
 (b) $\sqrt{8} + \sqrt{50} - \sqrt{18}$ (c) $(\sqrt{8} - 2^{\frac{1}{2}})^2$

d)	$\sqrt[3]{27x^6} + \sqrt[5]{32x^{10}}$	(e) $(4\sqrt{2} - 3)^2$

			_	_
				_
	<u></u>			
 				_
 				
	<u>-</u> _			
 		 -		
·				
				
 <u> </u>	-			
 	-			
				
 				

78
78

(g)
$$\sqrt{3} \left(\sqrt{48} - 3\sqrt{75} + 2\sqrt{108} \right)$$

	_	

(h)
$$\frac{\sqrt{18} - \sqrt{98}}{\sqrt{200}}$$

(i)
$$\frac{\sqrt{\sqrt{64}} - \sqrt{12}}{\sqrt{18} - \sqrt{27}}$$

(j)
$$\frac{(2 + \sqrt{3})(4 - \sqrt{3})}{\sqrt{100} + \sqrt{48}}$$

(k)
$$\frac{\sqrt[3]{27x^6} + \sqrt[4]{16x^8}}{\sqrt[3]{125x^{27}}}$$

 	 	_

	<u> </u>			_		
		<u> </u>		<u> </u>		
				-		
	<u> </u>					
		<u></u>				
					_	
	-					
	·					
		<u> </u>				
					<u> </u>	
	_					
				· · ·		
					_	
			_			
						