Grade 8 – Book A (Revised CAPS edition)

CONTENTS:

		<u>Page</u> :
A1.	Integers	3
A2.	Number patterns	53
A3.	Exponents	69
A4.	Introduction to Algebra	79
A5.	Linear equations	127

This book was drawn up and processed by E.J. Du Toit in 2013.

Contact number: 086 618 3709 (Fax)

Copyright © 2013. All rights reserved.

No part of this publication may be reproduced by any means without the prior written permission of the author.

ISBN 978-0-958443-17-3

Chapter A1

Integers

A1.1 Number systems and properties of integers:

Exercise 1: Date:

Complete: * Natural numbers: N = {______}

* Whole numbers $N_0 = \{$ ______}

* Integers: $Z = \{ \underline{\hspace{1cm}} \}$

The integers are expanded to include the fractions:

Rational numbers (\mathbb{Q}): Include all fractions which can be written as $\frac{a}{b}$, with a and b as integers and $b \neq 0$. This includes all finite and recurring decimal fractions.

E.g.
$$\frac{1}{3}$$
; $0,\dot{7}$; $-3\frac{5}{8}$; 2,34; $\sqrt{25}$; 9; $\sqrt[3]{27}$ etc.

Irrational numbers (\Q'): Include all infinite and non-recurring decimal fractions.

E.g. 3,68463....;
$$\pi$$
; $\sqrt{10}$; $\sqrt[3]{4}$ etc.

Real numbers (R) consist of all rational and irrational numbers in union: Q U Q'

Non-real numbers for example are: $\sqrt{-4}$; $\sqrt{-12}$ etc. $\sqrt[3]{-8}$ and $\sqrt[5]{-243}$ however, are real numbers, because $\sqrt[5]{-8}$ = -2 and $\sqrt[5]{-243}$ = -3.

Properties of 1 and 0:

* $m \times 0 = 0$

* $m \times 1 = m$

 $* 0 \div m = 0$

* $m \div 1 = m$

* $m \div 0 = \text{undefined}$

Identity elements:

- * 0 is the identity element of addition, because m + 0 = m
- * 1 is the identity element of multiplication, because $m \times 1 = m$

Inverses:

- * The sum of a number and its additive inverse is 0. E.g. 3 is the additive inverse of -3, because 3 + (-3) = 3 - 3 = 0
- * The multiplicative inverse (reciprocal) is the number multiplied with a certain number with a result of 1. E.g. the multiplicative inverse of 3 is $\frac{1}{3}$, because $3 \times \frac{1}{3} = \frac{1}{1} \times \frac{1}{3} = 1$

Other properties:

- * Commutative operation: $m \times n = n \times m$ or m + n = n + m
- * Associative operation: $(m \times n) \times p = m \times (n \times p)$ or (m+n) + p = n + (m+p)
- * Distributive operation: $p \times (m+n) = p \times m + p \times n$ or $p \times (m-n) = p \times m p \times n$

	
 .	
	
	
<u> </u>	
_ _	

A1.2 Rules for divisibility:

Divisor:	Rules for divisibility:
2	Last digit must be an even number or a 0.
3	Sum of all the digits must be divisible by 3.
4	Two last digits must be divisible by 4.
5	Last digit must be 5 or 0.
6	Rules for divisibility for 2 and 3 must apply.
8	Last three digits must be divisible by 8.
9	Sum of all the digits must be divisible by 9.
10	Last digit must be 0.
11	Calculate the sums of the alternate digits. The difference between these sums
	must be 0, or it must be divisible by 11.

E.g. 1 Determine whether 10 527 is divisible by the numbers in the above table:

- 2: NO, because the number (10 527) does not end on an even number.
- 3: YES, because the sum of the digits, 1+0+5+2+7=15 is divisible by 3.
- 4: NO, because 27(10 527) is not divisible by 4.
- 5: NO, because the number does not end on a 5 or a 0.
- 6: NO, because the rule of divisibility for 2 does not apply.
- 8: NO, because the last three digits, 527, are not divisible by 8.
- 9: NO, because the sum of the digits viz. 1+0+5+2+7=15 is not divisible by 9.
- 10: NO, because the last digit is not 0.
- 11: YES, because the difference between $1+5+7=\underline{13}$ and $0+2=\underline{2}$ with 13-2=11.

Exercise 2:		Date:		
Determine v	whether the following numbers are divisible by the nu	imbers in the above table:		
(1) 1 275:				
(2) 2 772:				

				_	
	<u> </u>				- -
			<u>-</u> -		
		· ·			
		-			
					<u>.</u>
					
				 -	
			-		-
					
				_	
			.		
					
·					
	· · · · · · · · · · · · · · · · · · ·	.			

	· · · · · · · · · · · · · · · · · · ·
A certain number is divisible by 2, 3, 5 and 11	. This number is not divisible by 8 and 9
but it is divisible by 4. Determine the smallest	number that meets these conditions.
.3 <u>Factors</u> :	
E.g. 2 The factors of 10 are: $F_{10} = \{1; 2; 5; 10\}$	
Exercise 3:	Date:
Complete:	
r	
$(1) F_{20} =$	
(2) $F_{16} = $	
$(3) F_5 =$	
(4) E _	
(4) F32 =	
$(5) F_{15} = $	
(6) $F_{28} = $	
(0) 128	
(7) $F_{12} = $	
$(8) F_7 = $	
(O) E	
(9) $F_{36} =$	

 	-				
 <u> </u>					_
				_	
				_	
				<u></u>	.
					_
			_		
 -					
_				_	
				_	
					<u>_</u>
 -					
				<u></u>	
		·	<u>-</u>		
_					
 				_	

A1.4 Multiples:

	ise 4:						Date: _		
omp	olete:								
11	М	_							
(1)	•								
(2)	M_{20}	=			<u> </u>				
(3)	M ₇	=							
(4)	M ₁₂	=							
(5)	M_{36}	=							
(6)	M_{0}	=							
(7)	M ₃₅	=							
(8)	M ₁₆	=						_	
(9)	M _{II}	=							
10)	ĮVI,	=							
10)	IVI ₃	=							
10)	IVI ₃	<u>=</u>			_			•	
			multiples of		_			<u></u>	
					_				
					_				
De	etermi	ne th	multiples of	6 which a	re also fac	tors of 12			
De	etermi	ne th		6 which a	re also fac	tors of 12	20.		
De	ime n	ne th	multiples of	6 which a	re also fac	tors of 12	20.		
De D	ime n	ne th	multiples of	6 which a	re also fac	tors of 12	20. Date: _		
De D	ime n	umb	ers and con	6 which a	re also fac	tors of 12	20. Date: _		
5 Pri Exerc Comp	ime n	umb	ers and con	6 which a	re also fac	etors of 12	Date: _		
De De Exerc Comp	ime n ise 5: olete: he def	umb	ers and con	6 which a	re also fac	etors of 12	Date: _		

·	
	 -
	-
<u> </u>	
···	

(6) Which natural numbers smaller than 50, are prime numbers?

(Do the following: Encircle 2; 3; 5 and 7 and cross out all the multiples of 2; 3; 5; and 7.

The numbers which are left will be the prime numbers. Remember to cross out 1 as well!)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

... The prime numbers smaller than 50 are: {_______

A1.6 Prime factors:

E.g. 4 The factors of 6 are: $F_6 = \{1; 2; 3; 6\}$

:. The prime factors of 6 are: 2 and 3. (In other words they are factors which are prime numbers)

E.g. 5 The factors of 20 are: $F_{20} = \{1; 2; 4; 5; 10; 20\}$

:. The prime factors of 20 are: 2 and 5.

$$\therefore 60 = 2 \times 2 \times 3 \times 5$$
$$= 2^2 \times 3 \times 5$$

Exercise 6:

Date:

Determine the prime factors of:

Determine the prime factors of

44

100

27

				<u> </u>
				<u></u>
	 _			
			_	
	<u>-</u>			
	-	-		
	_			
			-	
				
		_		
				

A1.7 LCM and HCF:

LCM = Lowest common multiple.

HCF = Highest common factor.

E.g.7 Determine the LCM of 8; 12 and 20 [First determine the prime factors!]

$$8 = 2 \times 2 \times 2$$

$$12 = 2 \times 2 \times 3$$

$$20 = 2 \times 2 \times 5$$

$$\therefore LCM = \boxed{2 \times 2} \times 2 \times 3 \times 5 = \underline{120}$$

E.g.8 Determine the HCF of 36 and 60. [First determine the prime factors!]

$$36 = 2 \times 2 \times 3 \times 3$$

$$60 = 2 \times 2 \times 3 \times 5$$

$$\therefore HCF = 2 \times 2 \times 3 = \underline{12}$$

Exercise 7:

Date: _____

(1) Determine the HCF of the following by finding the prime factors first:

=

	·	·	
			
			
	-		
	.	-	
			
			
	<u> </u>		<u> </u>
	<u></u>		
	_		
			
	- -		
<u></u>			
	, <u> </u>		
			
		<u> 2</u> 3888	.

(2)	Determine '	the LCM	of the	following	by finding	g the	prime	factors first:	
-----	-------------	---------	--------	-----------	------------	-------	-------	----------------	--

(a) 6 =	
---------	--

(c)
$$2 =$$

(3) Determine the LCM and the HCF:

		<u> </u>			
	-	<u>-</u>			
					<u>.</u>
					
					
					
-					
		_			
				-	
				. .	
				-	
	<u> </u>				
	_			<u>-</u>	
				_	
	_				

(b) 5 =	.:.LCM =
24 =	=
	∴HCF =
the smallest mounting board panel that sho	and (c) 18 cm ² have to be cut. Determine the area of ould be used so that any combination hout wasting any board. [Make use of prime factors.]
8 Square roots and cube roots:	
E.g.9 Determine the following by using prin	
(a) $\sqrt{784}$	(b) ₹3375
******	******
2 784 2 392 2 196 2 98 7 49 7 7	3 3 375 3 1 125 3 375 5 125 5 25 5 5 1
$784 = 2 \times 2 \times 2 \times 2 \times 7 \times 7$ $= 2^2 \times 2^2 \times 7^2$	$3375 = 3 \times 3 \times 3 \times 5 \times 5 \times 5$ $= 3^3 \times 5^3$
	$\therefore \sqrt[3]{3375} = 3 \times 5$
$\therefore \sqrt{784} = 2 \times 2 \times 7 \\ = 28$	= <u>15</u>
= <u>28</u>	= <u>15</u> Date:
= <u>28</u> Exercise 8:	

•		
-		
		
	-	
	-	
		
	•	

		 -
		_
·		
	<u></u>	,
		
		-
		
<u> </u>		
	_	_
		-
		