Grade 11 - Book D TG

(CAPS Edition)

CONTENTS:

	<u>Page</u> :
D1. Area and volume	3
D2. Euclidian Geometry	10
D3. Data Handling	65
D4. Probability	97

This book was compiled and processed by E.J. Du Toit in 2009. Revised CAPS edition 2012.

Contact number: 086 618 3709 (Fax!)

Copyright 2008. All copyrights reserved. No part of this publication may be reproduced in any form; unless written consent was obtained.

ISBN 978-1-919957-79-1

					-
					
	· -		<u> </u>		
		<u> </u>			
			_		
				_	
	_				
	· ·				
-		· · · · · · · · · · · · · · · · · · ·		_	
					
-					
				_	

Chapter D1

Area and volume

D1.1 Revision:

- * Rectangle: Perimeter = 2L + 2B Area = L × B
- * Square: Perimeter = 4LArea = L^2

* Triangle: Perimeter = side + side + side Area = $\frac{1}{2}$ B × \perp H

* Circle: Circumference = $2\pi r$

Area =
$$\Pi r^2$$

* Theorem of Pythagoras: $AB^2 = AC^2 + BC^2$

* Trigonometrical functions: E.g. $\sin \hat{B} = \frac{1}{s} = \frac{AC}{AB}$

or
$$\cos \hat{B} = \frac{a}{s} = \frac{BC}{AB}$$

or
$$\tan \hat{B} = \frac{1}{\pi} = \frac{AC}{BC}$$

D1.2 Surface area:

* Right prism: Surface area = Perimeter of base $\times \perp H + 2 \times$ area of base

E.g. Square base: Surf. area =
$$(4L)H + 2L^2$$
 but $L = H$

(Cube)
$$\therefore$$
 Surf. area = $(4L)L + 2L^2$

$$\therefore$$
 Surf. area = $(4L)L + 2L^2 = 4L^2 + 2L^2$

$$\therefore$$
 Surf. area = $6L^2$

E.g. Rectangular base: Surf. area =
$$(2L + 2B)H + 2LB$$

$$\therefore$$
 Surf. area = 2LH + 2BH + 2LB

E.g. Triangular base: Surf. area = (side + side + side) $\mathbf{H} + \mathbf{2} \times \frac{1}{2} \mathbf{bh}$

* Right cone: Surf. area = $\pi r(h + r)$ With: A the area of the base—use with volume!

H the perpendicular height - use with volume!

Surf. area = A + $\frac{1}{2}$ ph With: A the area of the base * Pyramid:

H the perpendicular height - use with volume!

* Sphere: Surf. area = $4\pi r^2$ with r the radius.

	4	
Exercise	- 1	٠
PVOLOTO		

Date:

Calculate the total surface area of the following: [If necessary, round off to the nearest integer.]

$$Area = (sy+sy+sy)H + 2 \times 2bh$$

$$= (4+16+18)(7) + (18 \times 2)$$

$$= (38)(7) + 36$$

$$= 266 + 36$$

$$= 302 m^{2}$$

Areg = A + Zph
= L2 + 2 (4L)h
$=(31)^2+\frac{1}{2}(4\times31)(34)$
= 961 + 2108
= 3069 mm ²

$$\frac{Area = 4\pi r^{2}}{= 4\pi (19)^{2}} = 4536, 459...$$

$$\approx 4536 \text{ mm}^{2}$$

120 mm = 12 cm $- Area = \pi r (h+r)$ $= \pi (5) (13+5)$ $= \pi (5) (18)$ = 282,74--- $\approx 283 \text{ cm}^{2}$

* $AB^{2} + AC^{2} = BC^{2} (Pyth)$ $5^{2} + 12^{2} = BC^{2}$ 169 = BCBC = 13cm

D1.3 Volumes:

- * Right prism: V = Base × Height
 - E.g. Square base: $V = L^3$ (Cube)
 - E.g. Rectangular base: $V = L \times B \times H$
 - E.g. Triangular base: $V = \frac{1}{2}bh \times H$
 - E.g. Circular base: $V = \pi r^2 H$ (Cylinder)
- * Right cone: $V = \frac{1}{3}AH$
- * Pyramid: $V = \frac{1}{3}AH$
- * Sphere: $V = \frac{4}{3} \pi r^3$

Exercise 2:

Dotos	
Date:	

Calculate the volume of each of the following: [Where necessary, rounded off to 2 decimals.]

V =	Tr2H	<u> </u>	
=	TT (50)	₹(300)	
	2 356	194,49	mm ³
			

$V = \frac{4}{3} \pi r^3$
$= \frac{4}{3} \pi (7)^3$
= 1436,75504
≈ 1436,76 cm³
•

Cube:
$$V = L^3$$

= $(120)^3$
= $1728 000 cm^3$
Spere: $V = \frac{4}{3}\pi r^3$
 $V = \frac{4}{3}\pi (10)^3$
 $V = 4188 79 - -$
 $V = 4188 79 - -$
 $V = 4188 79 - -$

$$\frac{BC^{2} = AC^{2} - AB^{2}}{BC^{2} = 5^{2} - 4^{2} = 9}$$

$$BC = 3 m$$

V = 13 AH	
$=\frac{1}{3}(\pi r^2)H$	
$=\frac{1}{3}(\pi \times 3^2)(4)$	
$V = 37,699 \dots$ $V \approx 37.70 \text{ m}^3$	

D1.4 Combinations:

	a	
Exercise	4.	

Date:

- (1) The sketch is an illustration of a wooden Block, that forms part of a set of toys, with a cylindrical hole in the middle. The block should be painted with one layer of lead-free paint Calculate: (Correct to 1 dec.)
 - (a) The volume of wood needed for this block expressed in mm³.
 - (b) The total surface area of the block that should be painted.

•
(a) Prism Volume = Lx8xH
= 6×5×4
$= 120 \text{ cm}^3$
Cylinder Volume = Tr2H
= π (2) ² (4)
= 50,265 cm³
: Block Volume = 120 cm3 - 50,265
= 69, 73
$\approx 69.7 \text{ cm}^3$
(b) Area Prisma = 2LH + 2BH + 2LB
=2(6)(4)+2(5)(4)+2(6×5)
= 148 cm²
_ Area Cylinder = 2TT (H+r)
$= 2\pi(2)(4+2)$
= 75,398 cm² 2 circles
Total surface area = 148 + 75 398 (2× 1112)
= 223 398 25 132
= 198 265
~ 1983 cm²

- (2) A semi sphere is mounted on a cube, with sides 8 cm each. [Correct to the nearest integer.]
 - (a) Determine the maximum diameter that the sphere can possibly have.
 - (b) Calculate the total surface area of the solid body.
 - (c) Calculate the volume of the solid body.

\mathcal{L}
(a) Max diameter = 8 cm
r=4cm
(b) Area cube = 62°
= 6 (8) ²
= 384 cm²
O.Cube - area: circle = 384 - П(4)2
= 333, 7345
@ Area 2 sphere = 2 (4π - 2)
$=2\pi(4)^2$
= 100,5309
: Total surface aea = 333 7345 +100,5309
= 434, 265
≈ 434 cm²
(c) Cube_volume = L3
= 8 ³
$= 512 \text{ cm}^3$
\$ Sphere volume = ½ x (\$π - 3)
$= \pm \times \left(\frac{4}{3} \pi \times 4^{3} \right)$
$= 134,041 \text{ cm}^3$
:. Total volume = 512 + 134,041
= 646,041
≈ 646 cm ³

(3) As seen in the diagram, ABCD is a common base of both the pyramid and the prism.
 ABCD is a rectangle with AB = 6 cm and BC = 8 cm. The height of the prism is 5 cm.
 EF = 4 cm is the perpendicular height of the pyramid.

Calculate: [Correct to 1 dec.]

- (a) the length of FG.
- (b) the length of the slant height of the pyramid.
- (c) the total surface area of the solid body.

P Q
(a) FG = 1 BC [EF as perpodicula]
:. FG = 4 cm
(b) In a EFG:
$\underline{EG^2 = EF^2 + FG^2} \underline{CP_9 + h. J}$
= 4 2 + 4 2
EG2 = 16 + 16
<u>EG = 32</u>
E.G. ≈ 5.7 cm contact area
withpyranic
(c) Area prisma = 2 LH + 2 BH + 2 LB - [1 LB]
= 2(8)(5) + 2(6)(5) + 1(8)(6)
= 188 cm²
Area piramide = A + 1 ph - A - with prism
$=\frac{1}{2}\rho h$
$=\frac{1}{2}(2\times6+2\times8)(4)$
$=\frac{1}{2}(28)(4)$
= 56 cm ²
Total surface area = 188 cm2 + 56 cm2
2/44 6-2

Chapter D2

Euclidian Geometry

D2.1 Revision:

(1) Angles:

Type of angle:	Example:	Angle size:
Acute angle		Bigger than 0° but smaller than 90°.
Right angle	<u></u>	Equal to 90°.
Obtuse angle	6	Bigger than 90° but smaller than 180°.
Flat angle	b_	Equal to 180°.
Re-entrant angle		Bigger than 180° but smaller than 360°.
Revolution	•	Equal to 360°.

(2) Parallel lines:

* If two lines are parallel to each other, the following will be true:

(a) Corresponding angles:

E.g.
$$a = e$$
; $b = f$; $c = g$ and $d = h$.

(b) Alternate angles:

E.g.
$$e = d$$
; $c = f$;
 $a = h$ and $b = g$.

(c) Co-interior angles:
$$E = 0 + a = 1809$$

E.g.
$$c + e = 180^{\circ}$$
 and $d + f = 180^{\circ}$

$$d + f = 180^{\circ}$$
.

* To prove that lines are parallel one of the following have to be true:

- (a) A pair of corresponding angles has to be equal or
- (b) A pair of alternate angles has to be equal or
- (c) Together a pair of co-interior angles has to equal 180°.

(3) Triangles:

* Naming of sides and angles:

A, B and C represent the angles. a, b and c represent the sides.

* Types of triangles:

Type of triangle:	Example:	Description:
Right angled triangle		One angle is equal to 90°.
Acute angled triangle		All the angles are acute angles.
Obtuse angled triangle		One of the angles is an obtuse angle.
Isosceles triangle		Two of the sides are of equal length.
Equilateral triangle		All three sides are of equal length.
Scalene triangle		All three sides have different lengths.

* Characteristics of triangles:

- (a) In a triangle the longest side is always opposite the largest angle.
- (b) In an isosceles triangle the angles opposite the equal sides are always of equal size.
- (c) In an equilateral triangle all the angles are equal to 60°.
- (d) The sum of the interior angles of all triangles is 180°.

$$\therefore \hat{A} + \hat{B} + \hat{C} = 180^{\circ}$$

(e) The exterior angle of a triangle is equal to the sum of the two opposite interior angles.

$$\therefore \hat{C}_1 = \hat{A} + \hat{B}$$

* Theorem of Pythagoras:

According to Pythagoras: "The square on the hypotenuse side of a right angled triangle is equal to the sum of the squares on the other two sides."

$$\therefore a^2 = b^2 + c^2$$

* Similar triangles:

Triangles are similar to each other if:

- (a) all the pairs of corresponding angles are equal and
- (b) all the pairs of corresponding sides have the same proportion.

If two triangles are similar, then:

- (a) all the corresponding angles are equal and
- (b) all the corresponding sides are in the same proportion.

* Congruent triangles:

Two triangles are congruent to each other if one of the following conditions is true:

(a) All three pairs of sides are equal.

(b) Two pairs of corresponding sides and the included angle have to be equal.

(c) Two pairs of angles and a corresponding side are equal.

(d) In a right angle triangle the hypotenuse and a corresponding right angle are equal.

* The area of a triangle:

Area
$$\Delta = \frac{1}{2}$$
 base \times perpendicular height $= \frac{1}{2}$ b \times h

(4) Kinds of quadrangles:

* The sum of the interior angles of a quadrangle is equal to 360°.

$$\hat{A} + \hat{B} + \hat{C} + \hat{D} = 360^{\circ}$$

* Types of quadrangles:

Type of quadrangle:	Characteristics:	Perimeter:	Area:
Square	*All the sides are of equal length. *The corresponding sides are parallel. *All the angles are 90°. *The diagonals bisects each other perpendicular and they bisect the angles.	4L	L ²
Rectangle B L.	*Opposite sides are of equal length and are parallel. * All the angles are 90°. * Diagonals bisect each other.	2L + 2B	L × B

Parallelogram	*Opposite sides are of equal length and are parallel. *The opposite angles are of equal size. * Diagonals bisect each other.	2B + 2S	B × ⊥h
Rhombus	*All the sides are of equal length. *The opposite sides are parallel. *The opposite angles are of equal size. *The diagonals bisect each other perpendicular and they bisect the angles.	4s	½ AC × BD
Trapezium A B C	*Only one pair of opposite sides are parallel.	AB+BC+ CD+DA	$\frac{1}{2} h \times (AB + CD)$
Kite S A P A B A B C C A B C C C C C C C C C C C C	*The pairs of adjacent sides are of equal length. *One pair of opposite angles are of equal size. *The diagonals are perpendicular and the longest diagonal bisects the shorter diagonal.	2a + 2b	$\frac{1}{2} \times SQ \times PR$

- * A quadrilateral is a parallelogram if:
 - both pairs of opposite sides are parallel. (Per definition!)
 - both pairs of opposite sides are equal in length.
 - both pairs of opposite angles are equal.
 - one pair of opposite sides is parallel and equal in length.
 - the diagonals bisect one another.
- * A rhombus is a parallelogram of which:
 - one pair of adjacent sides is equal in length.
 - the diagonals are perpendicular to one another.
- * A rectangle is a parallelogram of which:
 - one of the angles is 90°.
 - the diagonals are equal in length.
- * A square is a:
 - rectangle of which al the sides are of equal length.
 - rhombus for which all angles are 90°.

(5) Circles:

* Terminology:

* Area and circumference:

Circumference =
$$2 \times \pi \times r$$
 and Area = $\pi \times r^2$

Remember:
$$\pi = \frac{22}{7}$$
 and Diameter (d) = 2 × radius (r)

(6) Midpoint theorem:

The line segment joining the mid-points of two sides of a triangle, is parallel to the third side and equal half the length of the third side.

:. If AP = PB and AQ = QC,
then PQ // BC and
PQ =
$$\frac{1}{2}$$
 BC.

Converse: The line segment through the midpoint of one side of a triangle, parallel to another side, bisect the third side and also equal to half the length of the third side.

:. If AP = PB and PQ // BC
then AQ = QC and
PQ =
$$\frac{1}{2}$$
 BC.

D2.2 Centre of a circle:

Theorem 1:

"The line drawn from the centre of a circle, perpendicular to a chord, bisects the chord." [Line from entr o to mdpt chord]

Prove:

Given: A circle with centre O with OP \(\triangle \) AB.

To be proven: AP = PB

Construction: Join O with A and O with B.

Prove: In \triangle AOP and \triangle BOP:

* AO = BO [radii of circle O]
*
$$\triangle APO = \triangle BPO$$
 [OP $\perp \triangle AB$]

*
$$OP = OP$$
 [common]

*
$$OP = OP$$
 [common]

$$\therefore$$
 \triangle AOP \equiv \triangle BOP [hypotenuse and side right angled \triangle]

$$\therefore AP = PB$$
 $[\equiv]$

Converse of theorem 1:

"The line joining the centre of a circle and the midpoint of a chord, is perpendicular to the chord.

Theorem 2:

"The perpendicular bisector of a chord passes through the centre of a circle." [Perpendicular bisector on chord]

Given: A circle with AQ = QB and RS \perp AB.

To be proven: The centre of the circle passes through RS.

Construction: Choose P as any point on line RS.

Join P with A and with B.

Prove: In
$$\triangle$$
 AQP and \triangle BQP:

*
$$AQ = BQ$$
 [given]

*
$$A\hat{Q}P = B\hat{Q}P$$
 [OD $\perp AB$]

*
$$QP = QP$$
 [common]

$$\therefore \Delta AOP \equiv \Delta BOP$$
 [side, angle, side]

$$\therefore$$
 AP = PB

But the midpoint of a circle lies the same distance from any two (or more) points (as e.g. A and B) on the circumference of the circle. The centre of the circle should pass through RS.

E.g.1 O is the centre of the circle with
$$XT = TY$$
. $XR = 20$ cm and $XY = 16$ cm. Calculate the length of ST .

$$XO = OR = 10 \text{ cm}$$
 [Radius is halve of the diameter]
 $XT = TY = 8 \text{ cm}$ [Given]

$$OT \perp XY$$
 [Line from cntr \odot to midpt chord]

$$\therefore$$
 In $\triangle OXT$:

$$OX^2 = OT^2 + XT^2$$
 [Pythagoras]

$$10^2 = OT^2 + 8^2$$

$$\therefore OT^2 = 36$$

$$\therefore$$
 $OT = 6 cm$

$$\therefore ST = Radius (OS) + OT$$
$$= 10 cm + 6 cm$$

$$ST = 16 cm$$

		 -
		
· · · · · · · · · · · · · · · · · · ·		_
<u> </u>		
		_
	=	
		
· · · · · · · · · · · · · · · · · · ·		·
-		
		
 _	<u></u>	
	·- <u> </u>	-
		<u>_</u>
	_	

177		
Exercise	- 1	
LACIUISC	- 1	

Date:

(1) If OD = 5 cm and AB = 24 cm, calculate the length of the diameter of the circle with midpoint O.

AD=DB=12 [line 1 on radius]

: Diameter = 2x13 = 26 cm

(2) Calculate the length of QT if OS = 10 mm and OP = 6 mm, with O the centre of the circle and QP = PT.

OP I OT [Line midp 0 > midpt. chard] 05 = 10 = 00 [radii]

(3) O is the centre of the circle with MP = PN. Calculate the length of OR, correct to 1 dec, if MN = 18 cm and RP = PO = x.

$$\frac{3x^2 = 81}{x^2 = 27}$$

$$3c = 5,196... \Rightarrow x \approx 5,2 :: OR \approx 10, 4$$

(b) NY=NP+PY=25+20=45cm
In DANY:
$AN^2 = NY^2 + AY^2$
$AN^2 = NY^2 + AY^2$ = $(45)^2 + (15)^2$
- (42) + (15)
$AN^2 = 2025 + 225$
$AN^2 = 2.250$
(AA) = (AA) = AA
AN = 47,43
AN ≈ 47
·

(4) Circle O has a radius of 15 cm and BC = 24 cm. Calculate: (a) the length OE (b) area \triangle ABE

- (b) Arag DABE = \$ AE x BE $=\frac{1}{2}(15+9)\times(12)$
- (5) P is the centre of the circle with MN = 50 cm. $NM \perp AB$ and YP = 4YM. Calculate the length of: (Correct to the nearest integer.)

(a) AY

(b) AN

25 = 5x .: oc=5 .: 4P=5x4=20cm

In
$$\triangle APY$$
:

 $AP^{2} = PY^{2} + AY^{2}$
 $(25)^{2} = (20)^{2} + AY^{2}$
 $625 - 400 = AY^{2}$
 $225 = AY^{2}$
 $15 = AY$

$$\begin{array}{c} -(b) \\ \hline \end{array}$$

Terminology:

* ABC is an angle on the arc of the circle; also called the inscribed angle.

* AÔC is an angle at the centre of the circle with O as the centre of the circle; also called the central angle.

Theorem 3:

"The central angle subtended by an arc of a circle is double the size of an inscribed angle subtended by the same arc at the circle and lies on the same side of the centre of the centre." [cent $\angle \odot = 2 \times \text{inscr} \angle$]

Prove:

Given: Central angle AÔC and inscribed angle ABC subtended by the same arc AC.

To be proven: $\hat{AOC} = 2 \times \hat{ABC}$ Construction: Join B with O and extend.

Prove:
$$\ln \Delta \text{ AOB}$$
:
 $\hat{O}_1 = \hat{A} + \hat{B}_1$ [ext \angle of \triangle]
As in $\triangle \text{ COB}$:
 $\hat{O}_2 = \hat{C} + \hat{B}_2$ [ext \angle of \triangle]
 $\therefore \hat{O}_1 + \hat{O}_2 = \hat{A} + \hat{B}_1 + \hat{C} + \hat{B}_2$

but $\hat{A} = \hat{B}_1$ and $\hat{C} = \hat{B}_2$ [\angle ' opposite equal sides with radii AO = OB = OC]

$$\hat{O}_1 + \hat{O}_2 = \hat{B}_1 + \hat{B}_1 + \hat{B}_2 + \hat{B}_2$$

$$\therefore \hat{O}_1 + \hat{O}_2 = 2\hat{B}_1 + 2\hat{B}_2$$

$$\therefore \hat{O}_1 + \hat{O}_2 = 2(\hat{B}_1 + \hat{B}_2)$$

$$\therefore$$
 AÔC = 2 × ABC

The following sketches can also be used to prove the theorem above:

