$\frac{Grade\ 10-Book\ A}{(Revised\ edition-CAPS)}$

CONTENTS:

		<u>Page</u> :
A1.	Number systems	3
A2.	Algebraic expressions	15
A3.	Exponents	72
A4.	Number patterns	100
A5.	Equations and inequalities	116

This book was compiled and processed by E.J. Du Toit in 2011. Revised edition 2023.

Website: www.abcbooks.co.za

Copyright © 2011. All copyrights reserved. No part of this publication may be reproduced in any form; unless written consent was obtained.

ISBN 978-1-919957-01-2

Also visit <u>www.abcmathsandscience.co.za</u> for extra exercise, tests and exam papers.

Chapter A1

Number systems

NO CALCULATOR MAY BE USED IN THIS CHAPTER!

A1.1 Number systems:

Exercise 1:

Date:

Complete:

- * Natural numbers:
- \mathbb{N}
- = {_____}
- * Whole numbers:
- $\mathbb{N}_0 = \{\underline{\hspace{1cm}}\}$
- * Integers:

- * Rational numbers:
- = {_____} \mathbb{O}

A1.2 Rational numbers:

A1.2.1 Equivalent fractions:

E.g.1 Write down two equivalent fractions for $\frac{2}{3}$:

$$\frac{2\times3}{3\times3} = \frac{6}{9}$$

$$\frac{2 \times 3}{3 \times 3} = \frac{6}{9}$$
 or $\frac{2 \times 5}{3 \times 5} = \frac{10}{15}$

Exercise 2:

Date:

- (1) Write down three equivalent fractions for each of the following rational numbers:
 - (a) $\frac{-1}{4} = \underline{\hspace{1cm}} = \underline$

 - (c) $\frac{1}{6} = \underline{\hspace{1cm}} = \underline{$

 - (e) $\frac{12}{14} = \underline{\hspace{1cm}} =$
 - $2\frac{6}{11} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ (g)
- (2) Are the following equivalent fractions or not? (Answer yes or no only.)
- (a) $\frac{12}{5} = \frac{24}{10}$?: ____ (b) $\frac{7}{3} = \frac{3}{7}$?: ____ (c) $\frac{3}{-2} = \frac{6}{4}$?: ____
- (d) $\frac{3}{-5} = \frac{-9}{15}$?: ____ (e) $\frac{2}{3} = \frac{4}{9}$?: ____ (f) $\frac{3}{1} = \frac{48}{16}$?: ____
- (g) $\frac{4}{3} = \frac{-12}{-9}$?: ____ (h) $\frac{25}{10} = \frac{5}{2}$?: ____ (i) $\frac{5}{4} = \frac{4}{3}$?: ____

A1.2.2 Order of rational numbers:

E.g.2 (a) Arrange the following fractions in ascending order: $\frac{1}{2}$; $\frac{3}{4}$ and $\frac{2}{3}$:

$$\frac{1}{2} = \frac{6}{12}$$

$$\frac{1}{2} = \frac{6}{12}$$
 ; $\frac{3}{4} = \frac{9}{12}$ and $\frac{2}{3} = \frac{8}{12}$

$$\frac{2}{3} = \frac{8}{12}$$

$$\therefore \frac{1}{2} < \frac{2}{3} < \frac{3}{4}$$

(b) Write down a rational number between $\frac{3}{4}$ and $\frac{1}{3}$:

$$\frac{3}{4} = \frac{9}{12}$$
 and $\frac{1}{3} = \frac{4}{12}$

$$\frac{1}{3} = \frac{4}{12}$$

 $\therefore \frac{1}{2} < \frac{5}{12} \text{ or } \frac{6}{12} \text{ or } \frac{7}{12} \text{ or } \frac{8}{12} < \frac{3}{4}$

Exercise 3:

Date:

- (1) Arrange the following fractions in ascending order:
 - (a) $\frac{3}{4}$; $\frac{2}{3}$ and $\frac{4}{5}$:
 - (b) $\frac{2}{3}$; $\frac{5}{7}$ and $\frac{4}{6}$:
- (2) Arrange the following fractions in descending order:
 - (a) $\frac{5}{6}$; $\frac{2}{3}$ and $\frac{3}{4}$:
 - (b) $-1\frac{1}{2}$; $-1\frac{2}{3}$ and $\frac{-7}{5}$:
- (3) Place a rational number between each of the following numbers:
 - (a) $\frac{-1}{3}$ and $\frac{-3}{5}$:
 - (b) $\frac{3}{4}$ and $\frac{7}{10}$:

A1.2.3 Conversion of common fractions to decimal fractions:

E.g.3 Express the following as decimal fractions, without using a calculator:

(a)
$$\frac{3}{8} = \frac{3,000...}{8} = \frac{3,306040}{8} = 0,375$$

(a)
$$\frac{3}{8} = \frac{3,000...}{8} = \frac{3,306040}{8} = 0,375$$
 (b) $1\frac{2}{3} = 1\frac{2,000...}{3} = 1\frac{2,202020...}{3} = 1,66... = 1,6$

_			•	4
Ex	01	01	100	/1
1 '. X	C1		7	4

Express the following as decimal fractions, without using a calculator:

(1)
$$\frac{22}{7} =$$

(2)
$$4\frac{2}{3} =$$

(3)
$$\frac{1}{8} =$$

$$(4) \quad \frac{7}{9} =$$

$$(5) \quad \frac{17}{25} =$$

(6)
$$\frac{5}{100} =$$

$$(7) \quad \frac{4}{11} = \underline{\hspace{1cm}}$$

(8)
$$-2\frac{6}{7} =$$

(9)
$$-5\frac{5}{6} =$$

$$(10) \quad \frac{33}{8} =$$

A1.2.4 Rounding off decimal fractions:

E.g.4 Round off the following fractions correct to the number of decimals indicated in brackets:

(a) 4,34712 (to 3 dec)

(b) 290, 09832 (to 2 dec)

= 4,34712

= 290,09832 **Consider the underlined number**

≈ **4.347**

 ≈ 290.10

Exercise 5:

Date:

- (1) Round off the following fractions correct to the number of decimals indicated in brackets:
 - (a) 3,573 (to 2 dec)

(b) 12,00873 (to 3 dec)

(c) 0,00384 (to 5 dec)

(d) 7,3226 (to 1 dec)

(e) 8,39999 (to 1 dec)

(f) 90,9023 (to the nearest integer)

(g) 0,433218 (to 4 dec)

(h) 1 456,6799 (to 3 dec)

(i) 13,00034 (to 3 dec)

(i) 66,666 (to 2 dec)

- (2) Consider the following and choose the correct way of rounding off in brackets:
 - (a) $3,47653 \approx 3,477$ correct to the nearest (tenth, hundredth or thousandth)
 - (b) 96 995,31956 \approx 96 995,32 correct to the nearest (tenth, hundredth or thousandth)

A1.2.5 Conversion of decimal fractions to common fractions:

E.g.5 Express the following as common fractions in its simplest form:

(a)
$$4, 5 = 4\frac{5}{10} \left(\div \frac{5}{5} \right) = 4\frac{1}{2}$$

(b)
$$-0, 12 = -\frac{12}{100} \left(\div \frac{4}{4} \right) = -\frac{3}{25}$$

Exercise 6:

(9)

Date: _____

Express the following as common fractions in its simplest form:

$$(4) \quad -0.5 =$$

$$(5)$$
 $-1,2 =$

100,75 = _____

A1.2.6 Conversion of recurring fractions to common fractions:

E.g.6 Convert the following to common fraction in its simplest form:

(a)
$$0, \dot{1} = \frac{1}{9}$$
 ; $0, \dot{3} = \frac{3}{9} = \frac{1}{3}$; $0, \dot{5} = \frac{5}{9}$; $0, \dot{8} = \frac{8}{9}$

(b)
$$3,\dot{2}\dot{4}=3\frac{24}{99}=3\frac{8}{33}$$
 ; $0,\dot{4}\dot{2}\dot{1}=\frac{421}{999}$; $15,\dot{1}\dot{6}\dot{5}\dot{3}=15\frac{1653}{9999}=15\frac{551}{3333}$

(c)
$$0,0\dot{3} = 0,\dot{3} \div 10 = \frac{3}{9} \div \frac{10}{1} = \frac{3}{9} \times \frac{1}{10} = \frac{3}{90} = \frac{1}{30}$$

(d)
$$0,00\dot{4}\dot{6} = 0,\dot{4}\dot{6} \div 100 = \frac{46}{99} \div \frac{100}{1} = \frac{46}{99} \times \frac{1}{100} = \frac{46}{9900} = \frac{23}{4950}$$

(e)
$$\mathbf{0}, \mathbf{57} = \mathbf{0}, \mathbf{5} + \mathbf{0}, \mathbf{07} = \mathbf{0}, \mathbf{5} + \mathbf{0}, \dot{\mathbf{7}} \div \mathbf{10} = \frac{5}{10} + \frac{7}{9} \times \frac{1}{10} = \frac{5 \times 9}{10 \times 9} + \frac{7}{90} = \frac{45 + 7}{90} = \frac{52}{90} = \frac{26}{45}$$

Exer	<u>cise 7</u> :		Date:
Conv	vert the following to common fraction	ns in its simples	t form: (Without a calculator.)
(1)	3, Ġ	(2)	0, 13
		-	
_		-	
(3)	22,39	(4)	$-1,\dot{1}\dot{3}\dot{5}$ or $-1,\overline{135}$
_			
_		- -	
_			
(5)	0,7	(6)	0,003
		- -	
		· - · -	
_		 	
(7)	$1,\overline{214}$	(8)	3,258
		-	

☺	Calculate the following without using a calculator: $0, \dot{4} + \frac{2}{3}$
	<u></u>
	·
	·

A1.3 Irrational and Real numbers:

Irrational numbers cannot be expressed as a ratio between two integers. These numbers are non-terminating and non-recurring decimals.

E.g. 7 Irrational numbers:

- $\sqrt{2}$ or $\sqrt{7}$ or $\sqrt{\frac{3}{4}}$ etc. because 2; 7 and 3 are not perfect squares!
- $\sqrt[3]{12}$ or $\sqrt[3]{100}$ etc. because 12 and 100 are not perfect cubes!

Whereas the following numbers are rational numbers:

- $\sqrt{4}$ or $\sqrt{0,01}$ or $\sqrt{\frac{25}{9}}$ etc. because 4; 0,01; 25 and 9 are perfect squares!
- $\sqrt[3]{27}$ or $\sqrt[3]{125}$ etc. because 27 and 125 are perfect cubes!

The real numbers, $\mathbb R$ consist of the rational numbers, $\mathbb Q$ and the irrational numbers, $\mathbb Q'$. Remember that all terminating and recurring decimals are rational numbers.

E.g.8 Determine the two integers between which the irrational number $\sqrt{7}$ lies.

Choose the two perfect squares on either side of 7:

$$\sqrt{4} < \sqrt{7} < \sqrt{9}$$

$$\therefore 2 < \sqrt{7} < 3$$

Exercise 8: Date:

- (1) Which of the numbers are Rational numbers (\mathbb{Q}) and which are Irrational numbers (\mathbb{Q}')?
 - (a) 14 : ____ (b) $\frac{1}{5}$: ____ (c) $\sqrt{81}$: ____
 - (d) 0,12 : ____ (e) $\sqrt{18}$: ____ (f) 12, $\dot{2}\dot{3}$: ____
- (g) $-\sqrt{\frac{12}{3}}$: _____ (h) 0,2945 ... : _____ (i) $\sqrt[3]{64}$: _____
- (j) π : ____ (k) $\sqrt[5]{32}$: ____ (l) $\frac{11}{7}$: ____

	_						
(2)	Between	which two	integers	do the	following	irrational	numbers lie?

(a) $-\sqrt{12}$

(b) $\sqrt{66}$

(c) $\sqrt[3]{5}$

(d) $\sqrt[5]{2}$

(3) The diagram below is a summary of all the numbers that are used on school level. Place the following numbers in the right place on the table; simplify the number if necessary:

$$4\frac{1}{2}$$
 ; $\sqrt[3]{8}$; $\sqrt{8}$; -16 ; 0,45 ; 0,3 ; $\frac{18}{6}$; 0,2387 ... ; $\frac{0}{17}$; 6,88

Real numbers:

② (1) Except for the real numbers we also have the non-real numbers. Give an example of a non-real number.

(2) What is the set called that contain all real and non-real numbers?

A1.4 Representation of sets of numbers:

Sets of numbers can be represented or written in the following ways:

A1.4.1 Set builder notation:

E.g. 9 Write the following sets of numbers in set builder notation:

- (a) All natural numbers greater than 6: $\{x / x > 6; x \in \mathbb{N} \}$
- (b) All real numbers between -2 and 5: $\{m: -2 < m < 5 ; m \in \mathbb{R}\}$

A1.4.2 <u>Interval notation</u>:

Only sets that form part of real numbers can be represented using interval notation!

E.g. 10 Write the following in interval notation:

- (a) The real numbers between -2 and 4, including 4: $x \in (-2; 4]$ Open, closed interval!
- (b) $\{m \mid m > 7; m \in \mathbb{R}\}$: $m \in (7; \infty)$ Open interval!

A1.4.3 Number lines:

E.g. 11 Represent the following on a number line:

(a)
$$\{-1; 0; 1; 2; \dots \dots \}$$

A1.4.4 Solving of linear inequalities:

E.g. 12 Solve for x in each of the following and represent the solution on a number line:

(a)
$$x - 2 \ge 2$$
 if $x \in \mathbb{N}$
 $x \ge 2 + 2$
 $x \ge 4$

Exercise 9:

Date:		

(1) Write the following in interval notation (if applicable) and represent it on a number line:

(a)
$$\{x : x < -1; x \in \mathbb{R}\}$$

(b)
$$\{x : -3 < x < 3; x \in \mathbb{Z}\}$$

(c)
$$\{y : y < 2; y \in \mathbb{N}\}$$

(d)
$$\{x : x \ge -3; x \in \mathbb{R}\}$$

(e)
$$\{x / x < 3; x \in \mathbb{Z}\}$$

(f)
$$\{p / p \ge \frac{-5}{2}; p \in \mathbb{R}\}$$

(g)
$$\{m: -2 \le m < 5; m \in \mathbb{R}\}$$

(h)
$$\{x: x \leq 5; x \in \mathbb{N}_0\}$$

(2) Solve for x in each of the following and represent the solution on a number line:

(a)
$$x + 1 \le 3; x \in \mathbb{N}_0$$

(b)
$$2x \ge -8$$
; $x \in \mathbb{R}$

(e) $-6 < x - 1 \le 6; x \in \mathbb{R}$	R	(f) $x + 7 \ge -1$; $x \in \mathbb{Z}$
	ractions in its si	Date:implest form: (Without a calculator.)
(1) Convert the following to common f		implest form: (Without a calculator.)
(1) Convert the following to common f		implest form: (Without a calculator.)
5 REVISION EXERCISE: (1) Convert the following to common f (a) 14,17		implest form: (Without a calculator.)
(1) Convert the following to common f (a) 14,17		implest form: (Without a calculator.) (b) 0, 1234

(2) Indicate, by using a \checkmark , all the rational numbers between 0 and 10:

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
$\sqrt{9}$	-1	√8	<u>6</u> 3	³ √16	π	$\frac{0}{3}$	$\sqrt{144}$	4,124	$\sqrt{\frac{24}{6}}$

_	7,199 (to 1 dec)	-	0,048561 (to 4 dec)	
(c)	234,34 (to 1 dec)	(d)	1 001,1989 (to the near	rest intege
(e)	3,997 (to 2 dec)	(f)	23,712 (to the nearest i	nteger)
_		-		
Plac	ce any two irrational numbers l	between 2 and 3.		
Plac		between 2 and 3.		
Place		petween 2 and 3.		
Bet		e following irrati		
Bet	ce any two irrational numbers l	e following irrati	onal numbers lie?	

(6) Complete the missing representations in the table below:

	Set builder notation:	Interval notation:	Number line:
(a)	$\left\{x/-1 < x \le 2; x \in \mathbb{R}\right\}$		
(b)		$x \in [-2;5]$	
(c)		$y \in (-\infty;3]$	
(d)			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(e)	$\{y \mid y \geq 3; y \in \mathbb{N}\}$		
(f)		$m \in (0;4]$	
(g)			-5 -4 -3 -2 -1 0
(h)	$\{m: m \leq 6; m \in \mathbb{R}\}$		
(i)	$\{x / -1 < x < 2; x \in \mathbb{Z}\}$		
(j)		$x \in (-1; \infty)$	

Chapter A2

Algebraic expressions

A2.1 Products:

A2.1.1 The law of distribution:

E.g. 1 Determine the following products by using the law of distribution:

(a)
$$(x - 2)(x + 2)$$

(b)
$$(3m + n)(2m + 5n)$$

(a) x(x + 2) - 2(x + 2) $= x^2 + 2x - 2x - 4$

$$= x^{2} + 2x - 2x - 4$$

$$= x^{2} - 4$$

(b)
$$(3m + 1n)(2m + 5n)$$

 $= 6m^2 + 15mn + 2mn + 5n^2$ $= 6m^2 + 17mn + 5n^2$

Exercise 1:

Date: _____

Determine the following products:

(1)
$$(y - 4)(y + 3)$$

(2)
$$(p-2)(p-7)$$

(2x + 1)(x - 5)(3)

(4)
$$(x - 2y)(2x - y)$$

(4ab + 1)(2ab - 3)(5)

(6)
$$(5 - 7m)(2 - 3m)$$

(7) (2a - 4b)(3a + 2b)

(8)
$$(m+n)(2m-1)$$

(9) (d - 12)(12 + d)

$$(10) \qquad (a^2 + 4)(a^2 + 2)$$

$$(11) \qquad \left(\frac{1}{2}m - 6\right)(8m - 3)$$

$$(12) \qquad (-2k - 5)(5 + 3k)$$

$$(13) \qquad \left(p + \frac{1}{p}\right) \left(8p - \frac{4}{p}\right)$$

$$(14) \qquad (abc - 2ac)(abc + 3bc)$$

$$(15) \qquad (3r^3 + 2)(2r^2 - 5)$$

(16)
$$2x(x - 5y)(3x + 2y)$$

(17) $\left(\frac{1}{p^3q^2} - \frac{2}{p^2q}\right)\left(\frac{1}{p} + \frac{2}{q}\right)$ (18) $\left(\frac{m^2n}{3} - \frac{6}{mn}\right)\left(\frac{mn}{2} - \frac{3}{mn^2}\right)$

E.g. 2 Simplify:

(a)
$$(2a + 1)(2a - 1) = 4a^2 - 2a + 2a - 1 = 4a^2 - 1$$

(b)
$$(m^2 - 5n)(m^2 + 5n) = m^4 + 5m^2n - 5m^2n - 25n^2 = m^4 - 25n^2$$

Or shorter

(c)
$$(xy + 3)(xy - 3) = x^2y^2 - 9$$

(d)
$$\left(\frac{ab}{4} - \frac{1}{7}\right) \left(\frac{ab}{4} + \frac{1}{7}\right) = \frac{a^2b^2}{16} - \frac{1}{49}$$

_	_	
-		

Exercise 2:

Date: _____

Simplify:

(1)
$$(abc - 2)(abc + 2)$$

$$(2) \qquad \left(\frac{1}{3} + 5t\right)\left(\frac{1}{3} - 5t\right)$$

(3)
$$(p - 9q)(9q + p)$$

(4)
$$(n + 7k)(7n - k)$$

 $(5) \qquad (-a + 4b)(-a - 4b)$

(6)
$$-x\left(\frac{1}{x}-x\right)\left(\frac{1}{x}+x\right)$$

$$(7) \qquad (x^{2m} - 8)(x^{2m} + 8)$$

$$(8) \qquad (0,3 + 3q)(0,3 - 3q)$$

(9)
$$(b^6c^3 + 6)(b^6c^3 + 6)$$

$$(10) \qquad (4xk^5 - 7)(7 + 4xk^5)$$

$$(11) (m - 2n)^2(m + 2n)^2$$

$$(12) \qquad \left(\frac{m}{n} + 2\right) \left(\frac{m^2}{n^2} + 4\right) \left(\frac{m}{n} - 2\right)$$

A2.1.2 **Squaring of a binomial:**

E.g. 3 Determine the following products:

(a)
$$(2x + 1)^2$$

$$= (2x + 1)(2x + 1)$$

$$= 4x^{2} + 2x + 2x + 1$$

$$= 4x^{2} + 4x + 1$$

(b)
$$\left(m - \frac{1}{m}\right)^2$$

$$= \left(m - \frac{1}{m}\right)\left(m - \frac{1}{m}\right)$$

$$= m^2 - \frac{m}{m} - \frac{m}{m} + \frac{1}{m^2}$$

$$= m^2 - 2 + \frac{1}{m^2}$$

Exercise 3:

Date: _____

Determine the following squares:

(1)
$$(y - 11)^2$$

(2)
$$(3p + 2q)^2$$

$$(3) \qquad (-4 + 5c)^2$$

$$(4) \qquad (mn+3)^2$$

$$(5) (k^2 + 1)^2$$

 $(8 - 3b)^2$ (6)

 $\left(\frac{y}{5}-3\right)^2$ (8)

$$(9) (5p - 2p^2)^2$$

$$(10) \qquad \left(4 + \frac{3}{n}\right)^2$$

$$(11) \qquad (0.2 + 6y)^2$$

$$(12) \qquad \left(\frac{2m}{p} + \frac{p^2}{3m}\right)^2$$

E.g. 4 Simplify the following: (Shorter method!)

(a)
$$(m + 5n)^2 = (m)^2 + 2(m)(5n) + (5n)^2 = m^2 + 10mn + 25n^2$$

(b)
$$(pq - 2)^2 = p^2q^2 - 4pq + 4$$

(c)
$$\left(\frac{1}{3} + 3x\right)^2 = \frac{1}{9} + 2x + 9x^2$$

Exercise 4: Date:

Simplify (Use the shorter method!)

$$(1) (x - 3)^2$$

(2)
$$(6m - 1)^2$$

$$(3) \qquad (3y + 7)^2$$

$$(4) \qquad (3 + pq)^2$$

$$(5) \qquad (5t^2 + 8)^2$$

$$(6) \qquad \left(\frac{2}{3} - 6y\right)^2$$

$$(7) \qquad (-2k - 5)^2$$

$$(8) \qquad \left(\frac{3p-2q}{5m}\right)^2$$

$$(9) \qquad (4x^2 + 10 y^2)^2$$

$$(10) \qquad (2mn + 7)(7 + 2mn)$$

(11)	(5	2 _	3 <i>y</i>)	(Ω	ㅗ	211
(11)	()	5 —	<i>57</i> ()	(Ö	+	3 y

$$(12) -2(abc - 11)^2$$

A2.1.3 Binomials and trinomials:

E.g. 5 Simplify the following products:

$$(4y + 1)(y^{2} - y + 5)$$

$$= 4y^{3} - 4y^{2} + 20y + 1y^{2} - 1y + 5$$

$$= 4y^{3} - 3y^{2} + 19y + 5$$

Exercise 5:

Date: _____

Simplify the following products:

(1)
$$(2a - 3)(a^2 + 5a - 4)$$

$$(2) \qquad (m+7)(2m^2+3m+3)$$

$$(3) \qquad (1+x)(1-x+x^2)$$

$$(4) \qquad (3y - 2)(9y^2 + 6y + 4)$$

(5) $\left(2m + \frac{1}{2}\right)\left(\frac{m^2}{4} + 4 - 4m\right)$

(6)
$$(m^2n^2 - 5)(25 + 5m^2n^2 + m^4n^4)$$

_		

A2.1.4 The sum and difference of two cubes:

E.g. 6 Consider the following:

Product:

(a)
$$(x - 3)(x^2 + 3x \oplus 9) = x^3 + 3x^2 + 9x - 3x^2 - 9x - 27 = x^3 - 27$$

(b)
$$(y + 5)(y^2 - 5y + 25) = y^3 - 5y^2 + 25y + 5y^2 - 25y + 125 = y^3 + 125$$
Pattern:

Pattern:
(c)
$$(4m-1)(16m^2+4m+1) = (4m-1)[(4m)^2+(4m)(1)+(1)^2] = 64m^3-1$$

Pattern:
(d) $(n^2+2)(n^4-2n^2+4) = (n^2+2)[(n^2)^2-(2)(n^2)+(2)^2] = n^6+8$

(d)
$$(n^2 + 2)(n^4 - 2n^2 + 4) = (n^2 + 2)[(n^2)^2 - (2)(n^2) + (2)^2] = n^6 + 8$$

Exercise 6: Date:

Write down the following products directly, if possible:

(1)
$$(a + 3)(a^2 - 3a + 9)$$

$$(2) \qquad (2y^3 + 4)(4y^6 - 8y^3 + 16)$$

(3)
$$\left(\frac{x}{3}-1\right)\left(\frac{1}{9}x^2+\frac{1}{3}x+1\right)$$

(4)
$$\left(6a^2 - \frac{1}{2}\right)\left(36a^4 + 3a^2 + \frac{1}{4}\right)$$

$$(5) \qquad (5q + 7)(25q^2 - 35q + 49)$$

(6)
$$(8 - 3m)(9m^2 + 24m + 64)$$

 $(x - 5)(x^2 - 5x + 25)$ (7)

(8)
$$(0.1 + 0.2y)(0.01 - 0.02y + 0.04y^2)$$

 $(9a^4 + 6a^2b + 4b^2)(3a^2 - 2b)$ (9)

$$(10) 2(-1 + 5m)(25m^2 + 5m + 1)$$