Grade 11 – Book C (CAPS Edition) # **CONTENT**: | | Page: | |-------------------------|-------| | C1. Analytical Geometry | 3 | | C2. Trigonometry | 45 | This book was compiled and processed by E.J. Du Toit in 2008. CAPS edition 2012. Contact number: 086 618 3709 (Fax!) Copyright 2008. All copyrights reserved. No part of this publication may be reproduced in any form; unless written consent was obtained. ISBN 978-1-919957-70-8 | | | | _ | | |---|--------------|--------------|---|-------------| | | | | _ | _ | _ | | | | | | | | | | | | | | | _ | _ | - | | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | _ | - | ## Chapter C1 ### **Analytical geometry** #### C1.1 Gradient: #### C1.1.1 Calculating the gradient: In grade 10 the following formula for the gradient of the straight line were derived: E.g.2 Calculate the gradient of the line through the following points: M(2; -1) and N(-2; 3)******* $$m_{M} = \frac{y_{1}}{x_{2} - y_{1}} = \frac{3 - (-1)}{-2 - (2)} = \frac{3 + 1}{-2 - 2} = \frac{4}{-4}$$ $$\therefore m_{M} = -1$$ | | <u>.</u> | |-------------|----------| | | | | | _ | | | | | | | | | <u>_</u> | #### C1.1.2 Application of the gradient: - * Parallel lines have the same gradients: If $m_1 = m_2 \Leftrightarrow$ the lines are parallel. - * The product of the gradients of perpendicular lines is equal to -1 : If $m_1 \times m_2 = -1 \iff$ the lines are perpendicular. - * Three or more points are collinear if the points lie on the same straight line. - \therefore m_{AB} = m_{BC} \Leftrightarrow points A, B and C lies on the same straight line. - * The angle of inclination is the angle between the straight line and the positive x-axis: The angle of inclination above is θ and it is an acute angle (0° < θ < 90°), if the line has a positive gradient. The angle of inclination above is θ and it is an obtuse angle (90° < θ < 180°), if the line has a negative gradient. To calculate the angle of inclination: $\tan \theta = m_{PR}$ E.g.3 Consider: P(-3; -2), Q(5; 4) and R(1; -4) - (a) Determine whether the points are collinear. - (b) Prove that $QR \perp PR$. - (c) Calculate the angle of inclination (correct to 2 decimals) of line PQ. (a) $$m_{PQ} = \frac{y_Q - y_P}{x_Q - x_P} = \frac{4 - (-2)}{5 - (-3)} = \frac{4 + 2}{5 + 3} = \frac{6}{8} = \frac{3}{4}$$ $$m_{QR} = \frac{y_R - y_Q}{x_R - x_Q} = \frac{-4 - 4}{1 - 5} = \frac{-8}{-4} = 2$$ - \therefore P, Q and R is not collinear, because $m_{PQ} \neq m_{QR}$ - (b) We calculated in (a) that $m_{OR} = 2$ $$m_{PR} = \frac{y_R - y_P}{x_R - x_P} = \frac{-4 - (-2)}{1 - (-3)} = \frac{-4 + 2}{1 + 3} = \frac{-2}{4} = \frac{-1}{2}$$ $$\therefore m_{QR} \times m_{PR} = \frac{2}{1} \times \frac{-1}{2} = -1$$ - $\therefore QR \perp PR$ - (c) We calculated in (a) that $m_{PQ} = \frac{3}{4}$ $$\therefore \tan \theta = \frac{3}{4}$$ $$\therefore \quad \theta = 36.87^{\circ}$$ | | · · · · · · | |---------------|-------------| | | | | | | | | | | | | | | - | - | - | · | | | | | | | | | | | | Exercise 1: | Date: | |--|--| | 1) Determine whether A, B and C is collinear or (a) A(1; 2), B(3; 5) and C(5; 7) | | | | | | | | |) M(-2;-4) , N(1;-3) , R(2;-1) , T(-3;-1) (a) Determine which of the following lines are MN, TK, RK, NR and TM (b) Without calculating the angle of inclination an acute angle of inclination. (c) Calculate the angle of inclination of line T | e parallel and which are perpendicular: on, determine which of the lines in (a) have | | | | | | | | | | | | | |) D(-3;-1), E(0;-4), F(-1;y), G(x;3) a | nd H(2:2). Calculate the value of: | | (a) x, if EG // DH | (b) y, if FH ⊥ DE | | | | | | | | | | | |--------------|---------------|----------| | | * | | | | - | | | | _ | | | | | | | | | | | | | | | - | <u> </u> | | | | | | | | | | | <u> </u> | #### C1.2 Distance between two points: #### Derivation of a formula for the distance between any two coordinates: The coordinates of C will be $(x_2; y_1)$ because A and C have the same x-coordinates and B and C have the same y-coordinates. The length of BC is the difference between the two x-coordinates of B and C and the length of AC is the difference between the v-coordinates of A and C. E.g.4 Calculate the distance between S(7; -5) and T(4; -2). If necessary, write your answer as a simple surd. ***** $$x_1 \ y_1 \ x_2 \ y_2$$ S(7; -5) and T(4; -2) $$d(ST) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$ $$d(ST) = \sqrt{[(4) - (7)]^2 + [(-2) - (-5)]^2}$$ $$d(ST) = \sqrt{(4 - 7)^2 + (-2 + 5)^2}$$ $$d(ST) = \sqrt{(-3)^2 + (3)^2}$$ $$d(ST) = \sqrt{9 + 9}$$ $$d(ST) = \sqrt{18}$$ $$d(ST) = \sqrt{9 \times 2}$$ $$d(ST) = 3\sqrt{2}$$ | Empresion | α . | |-----------|------------| | Exercise | Z: | Date: (1) Calculate the distance between P and Q in each of the following. If necessary, round off, correct to two decimals: (a) P(2;5) and Q(7;4) (b) P(-2;-1) and Q(0;5) (c) P(-3;1) and Q(-3;13) | | | | | | _ | |-------------|---------------|-------------|----------|--------------|---------------| | | | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | <u>.</u> | <u> </u> | | - | | | | | | | | | | | | | _ | _ | | | | _ | | | | | | | | | | | _ | - | | | | | | | _ | | | | | | | <u> </u> | | | | | | | | | | | | | | _ | | | | | | _ | | | - | | | | | (d) P(2,3;3,1) and C | (5,3 : 1,1 | 1) | (| e) P(2 <i>m</i> | ; <i>m</i>) an | d Q(7m; | - 4m) | |---|------------|----------|-----------|-----------------|-----------------|---------|-------------| | | | | - | | | | _ | | - | | | _ | | | | <u>.</u> | | | | | | | | | | | | | | _ | | | _ | | | | | | _ | | _ | - | | | | | | - | | | | | | | | | - | | | | | | | | | _ | | | | | | | | | | | | | | | Calculate d(AB) in (a) $A(1; \sqrt{8})$ and B | | | | | | | | |) A(I. VO) and D | (-7.0) | (U) A(-1 | o ,) and | I D(-2 ; I. |) (C) | A(4,1) | and b(-4, | | <u> </u> | _ |) Calculate the value(| s) of p if | d(LM) = | 5 with L | (-2; p) a | nd M(-5 | ; 3). | | | | | | | | | | | | - | | | | | | _ | | - | | | | | | | | |
 | |------------------| |
 | | | | | |
 | |
 | |
 | | | | | | | | | |
 | | | | | | | | | | <u> </u> | |
 | | | | | |
 | | | |
 | | | |
 | | | | | |
 | |
 | | | | | | (a) | Calculate the perimeter of triangle ABC, correct to 1 decimal. | |---------|---| · · · · · · · · · · · · · · · · · · · | | , | | | (h) | Prove that $\hat{B} = 90^{\circ}$. | | (D) | Prove that B = 90°. | | | | | | | | ٠ | | | | | | | | | P(| (-2; 0), Q(-1; -3), R(2; 0) and S(1; 3) is the vertices of a parallelogram. Draw a diagram | | P((a) | (-2; 0), Q(-1; -3), R(2; 0) and S(1; 3) is the vertices of a parallelogram. Draw a diagram Determine whether PQRS is a rhombus or not. | | P((a) | (-2;0), Q(-1;-3), R(2;0) and S(1;3) is the vertices of a parallelogram. Draw a diagram Determine whether PQRS is a rhombus or not. | | P((a) | (-2;0), Q(-1;-3), R(2;0) and S(1;3) is the vertices of a parallelogram. Draw a diagram Determine whether PQRS is a rhombus or not. | | . P((a) | (-2;0), Q(-1;-3), R(2;0) and S(1;3) is the vertices of a parallelogram. Draw a diagram Determine whether PQRS is a rhombus or not. | | P((a) | (-2;0), Q(-1;-3), R(2;0) and S(1;3) is the vertices of a parallelogram. Draw a diagram Determine whether PQRS is a rhombus or not. | | . P((a) | (-2;0), Q(-1;-3), R(2;0) and S(1;3) is the vertices of a parallelogram. Draw a diagram Determine whether PQRS is a rhombus or not. | | P((a) | (-2;0), Q(-1;-3), R(2;0) and S(1;3) is the vertices of a parallelogram. Draw a diagram Determine whether PQRS is a rhombus or not. | | P((a) | (-2;0), Q(-1;-3), R(2;0) and S(1;3) is the vertices of a parallelogram. Draw a diagram Determine whether PQRS is a rhombus or not. | | | (-2;0), Q(-1;-3), R(2;0) and S(1;3) is the vertices of a parallelogram. Draw a diagram Determine whether PQRS is a rhombus or not. Calculate the gradient of PS: | | | Determine whether PQRS is a rhombus or not. | | | Determine whether PQRS is a rhombus or not. | | | Determine whether PQRS is a rhombus or not. | | a) | Determine whether PQRS is a rhombus or not. | | (a) | Determine whether PQRS is a rhombus or not. | | · · · · · · · · · · · · · · · · · · · | - | |---------------------------------------|---------------| | | | | | | | ···· | | | | | | | | | | | | | | | | | | | - | · · · · · · · · · · · · · · · · · · · | | | | | | | | | S(-2; 3) . I
S, T and R a | re points on t | he circumfe | rence of the | on the out | side of A(-
h A as midp | l; 1). Show tha | |------------------------------|----------------|-------------|--------------|-------------|----------------------------|-----------------| - | | - | | | | | | | | | | | | | _ | | _ | Calculate the | value(s) of y | for which | PQ = QR | if P(-2;5 |), Q(1;6) | and R(0; y). | | Calculate the | value(s) of y | for which | PQ = QR | if P(-2 ; 5 |), Q(1;6) | and R(0; y). | | Calculate the | value(s) of y | for which | PQ = QR | if P(-2:5 |), Q(1;6) | and R(0; y). | | Calculate the | value(s) of y | for which | PQ = QR | if P(-2;5 |), Q(1:6) | and R(0; y). | | Calculate the | value(s) of y | for which | PQ = QR | if P(-2;5 |), Q(1;6) | and R(0; y). | | Calculate the | value(s) of y | for which | PQ = QR | if P(-2:5 |), Q(1;6) | and R(0; y). | | Calculate the | value(s) of y | for which | PQ = QR | if P(-2:5 |), Q(1;6) | and R(0; y). | | | | - | | | | |-------------|----------|---------------|---------------|--------------|-------------| | | | _ | | | | | | | | | | | | | - | - | | | | | | | | | | | | _ | | | | | | | - | | | | | | | | | <u> </u> | | | | | _ | _ | | | | | | | | | | | | | | | | _ | | | • | | <u></u> | - | | | | · · | | | _ | | | | | | | _ | <u> </u> | <u> </u> | | | | _ | _ | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | © Calculate DAC, correct to one decimal, with A(2; 5), B(-6; -1) and C(7; -2): | |--| | A O C | | * | | | | | | | | | | | | | | | | | | | # C1.3 Mid-point of a line segment: E.g.5 Calculate the mid-point of line segment PQ with P(-4; 5) and Q(2; -1). The mid-point of PQ, M, will be precisely halfway between P and Q. The x-coordinate of M will be precisely in the middle of the x-coordinates of P and Q and the y-coordinates of M will be precisely in the middle of the y-coordinates of P and Q. $$\therefore M_x = \frac{-2+4}{2} = \frac{2}{2} = \underline{1}$$ and $M_y = \frac{-3+5}{2} = \frac{2}{2} = \underline{1}$ $$\therefore \underline{M} = (1; \underline{1})$$ | | <u>-</u> | | | | |--------------|-------------|-----------------|---------------|--------------| | | | | <u> </u> | | | - | | | | | | | | | _ | | | | | | | | | | | | | | | | <u> </u> | | | _ | | | | _ | | <u>_</u> | | | | <u> </u> | | | | | | | | | | _ | | | | | | - | | | | | | | | | | - | | _ | | - | | | | | | | | | | | | 7 | | | | | | | | - - | <u> </u> | | | | | | | | | | - | | | | | | | | | | | | | | <u>_</u> | | | | | | | | | | | | | | | | | | | | | · | | | | | | | | | | | #### Deduction of a formula for the mid-point of any line section between two coordinates: The mid-point M of line AB lies exactly halfway between A and B. .: M's x-coordinate lies exactly halfway between the x-coordinates of A and B and M's y-coordinate lies exactly halfway between A and B's y-coordinates. $$\therefore M = \left(\frac{x_1 + x_2}{2} : \frac{y_1 + y_2}{2}\right)$$ E.g.6 Calculate the mid-point between R(-3; 2) and T(-4; 8). $$x_1 \ y_1 \ x_2 \ y_2$$ R(-3; 2) and T(-4; 8). $$\therefore M = \left(\frac{x_1 + x_2}{2} : \frac{y_1 + y_2}{2}\right) = \left(\frac{-3 + (-4)}{2} : \frac{2 + 8}{2}\right) = \left(\frac{-3 - 4}{2} : \frac{10}{2}\right)$$ $$\therefore M = \left(\frac{-7}{2}; 5\right) \qquad or \qquad \left(-3\frac{1}{2}; 5\right)$$ Exercise 3: Date:____ (1) Calculate the mid-point of each of the following line segments: (a) A(-2; 4) and B(-6; 4) (b) C(-2; 0) and D(0; 2) (c) I(-2; -7) and J(2; 1) (d) K(5; 1) and L(11; 1) | | <u> </u> | |
 | | |-------------|-------------|---------------------------------------|-------------------|---------------| | | | | | | | | | |
 - | | | | · | |
<u> </u> | | | | | |
 | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | · . |
 | | | | | |
 | | | | | |
 | | | | | <u> </u> |
 | | | | | |
 | | | | <u> </u> | |
 | | | | | |
 | | | | | | | | | | | |
 | | | | | | | | | | | <u>-</u> |
 | - | | | | |
 | | | | | · · · · · · · · · · · · · · · · · · · |
_ | <u> </u> | | | | |
 | | | | | |
 | | | | | |
 | | | | | | | _ | | | | · |
 | | | | | |
 | | | | | - |
 | | | | · | |
 | | | | | |
 | | | | | <u>-</u> |
 | | | | | |
 | | | | | |
 | |