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Chapter A2  

 Logarithms and function inverses 
 

 

See grade 11 Functions and exponents for revision and background! 
 
 

A2.1 Logarithms: 

A2.1.1 Definition of a logarithm: 

 
    

        Logarithms are the inverses of exponents. 
 

        Ex.  If    25  =   32    then    log2 32  =   5 
 

     ∴ Per definition if  y  =  log𝑎 𝑥     ⟺       𝑥 =   𝑎𝑦   with   𝑎  >   0  ;   𝑎  ≠   1       𝑥  >   0 
 

       Remember:   *   log𝑎 1  =  0    because     𝑎0  =  1 
 

                              *   The natural logarithm is  log 𝑥   ⟺    log𝟏𝟎 𝑥     
 

                              *   log𝑎 𝑎  =  1    because     𝑎1  =  𝑎 
 

 

 

 

 

A2.1.2 Laws of logarithms: 
 

    

          For   𝑎  >   0  ;   𝑎  ≠   1   ;  𝑏  >   0  ;   𝑏  ≠   1   ;   𝑥  >   0   and   𝑦  >   0 
 

• log𝑎 𝑥  +   log𝑎 𝑦  =   log𝑎 𝑥𝑦 
 

• log𝑎 𝑥 −   log𝑎 𝑦  =   log𝑎
𝑥
𝑦
 

 

• 𝑛 log𝑎 𝑥  =   log𝑎 𝑥𝑛 
 

• log𝑎 𝑥  =   
log𝑏 𝑥

log𝑏 𝑎
 

 

 

 
 

        Ex. 1 Simplify: (Without using a calculator.)   
   
                          𝐥𝐨𝐠𝟒 𝟐  +   𝐥𝐨𝐠𝟒 𝟑𝟐                           (b)       𝐥𝐨𝐠 𝟐𝟎𝟎 −   𝐥𝐨𝐠 𝟐 
 

                     =  𝐥𝐨𝐠𝟒(𝟐  ×   𝟑𝟐)                                       =   𝐥𝐨𝐠(𝟐𝟎𝟎 ÷ 𝟐) 
 

                     =  𝐥𝐨𝐠𝟒(𝟔𝟒)                                                 =   𝐥𝐨𝐠 𝟏𝟎𝟎 
 

                     =  𝐥𝐨𝐠𝟒(𝟒𝟑)                                                  =   𝐥𝐨𝐠𝟏𝟎 𝟏𝟎𝟐 
 

                     =  𝟑𝐥𝐨𝐠𝟒(𝟒)                                                 =   𝟐𝐥𝐨𝐠𝟏𝟎 𝟏𝟎 
           

                     =  𝟑(𝟏)                                                         =   𝟐(𝟏) 
 

                     =  𝟑                                                                   =   𝟐                                    

(a)  
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               (c)                                                                         (d)    𝐥𝐨𝐠𝟒 𝟏𝟔  +   𝐥𝐨𝐠𝟑
𝟏

𝟑
  −   𝐥𝐨𝐠𝟕 𝟏     

 

                    =  
𝐥𝐨𝐠 𝟑𝟔

𝐥𝐨𝐠 𝟑
 ×  

𝐥𝐨𝐠 𝟗

𝐥𝐨𝐠 𝟔
                                                   =  𝐥𝐨𝐠𝟒 𝟒𝟐  +   𝐥𝐨𝐠𝟑 𝟑−𝟏  −   𝟎 

 

                    =  
𝐥𝐨𝐠 𝟔𝟐

𝐥𝐨𝐠 𝟑
 ×  

𝐥𝐨𝐠 𝟑𝟐

𝐥𝐨𝐠 𝟔
                                                 =  𝟐 𝐥𝐨𝐠𝟒 𝟒 +  (−𝟏) 𝐥𝐨𝐠𝟑 𝟑 

 

                    =  
𝟐 𝐥𝐨𝐠 𝟔

𝐥𝐨𝐠 𝟑
 ×  

𝟐 𝐥𝐨𝐠 𝟑

𝐥𝐨𝐠 𝟔
                                               =  𝟐(𝟏)  −   𝟏(𝟏) 

 

                    =  
𝟐 𝐥𝐨𝐠 𝟔

𝐥𝐨𝐠 𝟑
 ×  

𝟐 𝐥𝐨𝐠 𝟑

𝐥𝐨𝐠 𝟔
                                               =  𝟐  −   𝟏 

 

                    =  𝟐 × 𝟐                                                              =  𝟏                                                             
 

                    =  𝟒                                                                 

                     
        Ex. 2 If  𝐥𝐨𝐠 𝟑 = 𝟎, 𝟒𝟕𝟕  and  𝐥𝐨𝐠 𝟓 =  𝟎, 𝟔𝟗𝟗, calculate:     
                  (Without using a calculator.)   

 

               (a)   𝐥𝐨𝐠 𝟒𝟓                                                           (b)    𝐥𝐨𝐠 𝟑𝟎 
 

                  =  𝐥𝐨𝐠(𝟗 × 𝟓)                                                       =   𝐥𝐨𝐠(𝟑 × 𝟏𝟎) 
 

                  =  𝐥𝐨𝐠(𝟑𝟐 × 𝟓)                                                     =   𝐥𝐨𝐠 𝟑 +  𝐥𝐨𝐠 𝟏𝟎 
 

                  =  𝐥𝐨𝐠 𝟑𝟐  + 𝐥𝐨𝐠 𝟓                                                =   𝐥𝐨𝐠 𝟑 + 𝐥𝐨𝐠 𝟏𝟎 
 

                  =  𝟐 𝐥𝐨𝐠 𝟑 + 𝐥𝐨𝐠 𝟓                                              =   𝟎, 𝟒𝟕𝟕 +  𝟏 
 

                  =  𝟐 × 𝟎, 𝟒𝟕𝟕 +  𝟎, 𝟔𝟗𝟗                                       =   𝟏, 𝟒𝟕𝟕 
 

                  =  𝟎, 𝟗𝟓𝟒 +  𝟎, 𝟔𝟗𝟗                                   
 

                  =  𝟏, 𝟔𝟓𝟑          

                          
        Ex. 3 Solve for    :  (Without using a calculator.)   

 

               (a)    𝐥𝐨𝐠 𝒙  +  𝐥𝐨𝐠(𝒙 +  𝟑) =   𝟏                        (b)    𝐥𝐨𝐠𝟑(𝒙 + 𝟒) −  𝐥𝐨𝐠𝟑 𝒙 = 𝐥𝐨𝐠𝟑 𝟓 
 

                    ∴  𝐥𝐨𝐠𝟏𝟎 𝒙(𝒙 +  𝟑)  =  𝟏                                      ∴  𝐥𝐨𝐠𝟑
(𝒙 + 𝟒)

𝒙
  =  𝐥𝐨𝐠𝟑 𝟓 

 

                   ∴  𝟏𝟎𝟏  =   𝒙𝟐  +   𝟑𝒙                                           ∴  𝐥𝐨𝐠𝟑
(𝒙 + 𝟒)

𝒙
  =  𝐥𝐨𝐠𝟑 𝟓 

 

                   ∴  𝟎  =  𝒙𝟐  +   𝟑𝒙 − 𝟏𝟎                                      ∴          
(𝒙 + 𝟒)

𝒙
  =  𝟓          [Per definition] 

 

                   ∴  𝟎  =  (𝒙  +   𝟓)(𝒙  −   𝟐)                                ∴          𝒙 + 𝟒  =  𝟓𝒙           
 

                   ∴   𝒙  =  −𝟓    or     𝒙  =  𝟐                                  ∴        𝒙 − 𝟓𝒙  =  −𝟒           
 

                  but   𝒙  ≠   −𝟓, because  𝒙  >   𝟎                       ∴            −𝟒𝒙  =  −𝟒          
  

                                                                                                 ∴                 𝒙  =  𝟏           
 

        Ex. 4 Solve for    :  (Use a calculator and give your answer correct to    decimals.) 

 

               (a)         𝟑𝒙 = 𝟕                                                     (b)        𝟏, 𝟑 = 𝟐𝒙 − 𝟑  
 

               ∴  𝐥𝐨𝐠𝟑 𝟕   =   𝒙                                                ∴  𝐥𝐨𝐠𝟐 𝟏, 𝟑   =   𝒙 − 𝟑 
 

               ∴             𝒙 =
𝐥𝐨𝐠 𝟕

𝐥𝐨𝐠 𝟑
                                              ∴         𝒙 − 𝟑 =

𝐥𝐨𝐠 𝟏,𝟑

𝐥𝐨𝐠 𝟐
 

 

               ∴             𝒙 ≈ 𝟏, 𝟕𝟕                                            ∴         𝒙 − 𝟑 = 𝟎, 𝟑𝟕𝟖𝟓 … 
 

                                                                                          ∴                𝒙 ≈ 𝟑, 𝟑𝟖 

 𝒙 

𝐥𝐨𝐠𝟑 𝟑𝟔  × 𝐥𝐨𝐠𝟔 𝟗 

  𝒙  𝟐 
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    Exercise 1:                                       

 

(1)  Write the following in logarithmic form:   

 (a)  73  =   343                                                                               (b)  𝑥 = (
1

2
)

2

 

 (c) 𝑦 =   2𝑥 +  1 (d) 2log 𝑥 = 5 

     

(2)  Write the following in exponential form:   

 (a) log2 32 =   5                                 (b) log 𝑦 = 𝑘 

 (c) 𝑚 =  log3 𝑘 (d)   log3
1

27
= −3 

     

(3)  Write the following as separate logarithms with base 10 if {𝑥 ; 𝑦 ; 𝑡 ; 𝑝} > 0:   

 (a) log
𝑥𝑦

𝑝
 (b) log𝑡 𝑝2 𝑡 

     

(4)  Write the following as a single logarithm if {𝑥 ; 𝑦 ; 𝑡 ; 𝑝} > 0:   

 (a) log 𝑡 − log 𝑦 + 2 log 𝑝 (b) log2(𝑥 − 2) − log2(𝑥 + 1) − log2 𝑥 

     

(5)   Simplify without using a calculator:   

 (a)  log 25  +  log 8 −  log 2                      

 (b)  log2 16  +  3 log3 (
1

9
)  −  log15 1   

 (c)  
log 32 − log 243

log 3 −  log 2
        

 (d)  
log5 27 +  log

5
9

log5 √3
   

 (e)  log 8 000 − log 8   

 (f)   
1

2
log4 16  +  log0,2 0,04  −  log3 √27 − log 25 × log5 1   

     

(6)  Solve for 𝑥: [Where necessary, round off correct to 2 decimals.]   

 (a) log4 2𝑥 =   3                                      

 (b) log3(𝑥 +   2) + log3 𝑥  =   1   

 (c) log2(2𝑥 + 12)  −  2 log2 𝑥 = 1         

 (d) 73𝑥  =   14   

     

(7)  Write the following in terms of 𝑚 and/or 𝑛 if log 6 = 𝑚 and log 3 = 𝑛:   

 (a) log 18 (b) log27 36 

 (c) log 300 (d) log 20 
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A2.2  Inverses: 
 

 
    

   The rule for the reflection in the line 𝑥 = 𝑦 is:   (𝑥 ;  𝑦)   ⟺   (𝑦 ;  𝑥) 
 

   This reflection in the line 𝑦 = 𝑥 is referred to as the inverse  ⟺  it means that the 𝑥 and 𝑦  

   swap places! 
 

   The inverse of 𝑓(𝑥) is written as 𝑓−1(𝑥). 
 

 

 

        Ex. 5 Determine 𝒇
−𝟏(𝒙) in each of the following in the form 𝒇−𝟏(𝒙) =…  : 

 

               (a)                  𝒇(𝒙) = 𝟓𝒙𝟐                                        (b)                     𝒇: 𝒙 →
𝟑

𝒙 + 𝟐
  

 

                   ∴       For 𝒇:   𝒚 = 𝟓𝒙𝟐                                           ∴       For 𝒇:   𝒚 =
𝟑

𝒙 + 𝟐
                                                

 

                   ∴   For 𝒇−𝟏:   𝒙 = 𝟓𝒚𝟐                                           ∴   For 𝒇−𝟏:   𝒙 =
𝟑

𝒚 + 𝟐
                                                

 

                                  ∴      
𝒙

𝟓
= 𝒚𝟐                                                     ∴      𝒚 + 𝟐 =

𝟑

𝒙
                                                

 

                                  ∴     𝒚 = ±√
𝒙

𝟓
                                                  ∴             𝒚 =

𝟑

𝒙
  −  𝟐                                               

 

                   ∴           𝒇−𝟏(𝒙) = ±√
𝒙

𝟓
                                                  ∴    𝒇−𝟏(𝒙) =

𝟑

𝒙
  −  𝟐 

 

 

        Exercise 2:                                                           

 

(1)  Determine 𝑓−1(𝑥) in each of the following and write it in the form 𝑓−1(𝑥)  =  …….   

 (a)  𝑓(𝑥) =   3𝑥 −   4                                   (b) 𝑓(𝑥) =  5𝑥 

 (c) 𝑓(𝑥) =  −2𝑥2 (d) 𝑓(𝑥) =  log0,5 𝑥 

     

(2)  Determine 𝑔−1(𝑥) in each of the following and write it in the form 𝑔−1: 𝑥 →  …….   

 (a)  𝑔 ∶ 𝑥 →   
𝑥

4
                                   (b) 𝑔 ∶ 𝑥 →   log3 𝑥 

 (c) 𝑔 ∶ 𝑥 →    3𝑥 + 1 (d) 𝑔 ∶ 𝑥 →   −0,5𝑥 

     

(3)  Determine ℎ in each of the following and write it in the form ℎ(𝑥)  =  …….   

 (a)  ℎ−1(𝑥) =   log7 𝑥                                   (b) ℎ−1(𝑥) =  
𝑥 − 2

3
 

 (c) ℎ−1(𝑥) =  
1

4
𝑥2 (d) ℎ−1(𝑥) =  log 𝑥   

     

(4)  Consider the following: 𝑝(𝑥) = {(1; 7) ; (2; 8) ; (3: 9) ; (4; 10)}    

 (a)  Is 𝑝 a function? Motivate your answer.   

 (b)  Write down the range of 𝑝−1(𝑥).   

 

(5)  Explain the difference between 𝑓−1(𝑥) and (𝑓(𝑥))−1.   
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A2.3  Graphs of inverses:  
A2.3.1  Graphs of inverses of the straight line:  
 

        See grade 11 Linear Functions for revision and background! 

 
    

        If the function                                is given, the inverse will obtained as follow: 
        

       𝑓(𝑥) =   𝑚𝑥 +  𝑐    ⟺    𝑦  =   𝑚𝑥  +  𝑐 
 

      ∴  For the inverse the 𝑥 and 𝑦 swap place:       𝑥  =   𝑚𝑦 +  𝑐 
 

                                                                         ⟹   𝑦 =   
𝑥 −  𝑐

𝑚
                 [Make 𝑦 the subject!] 

 

      ∴   𝑓−1(𝑥)  =   
𝑥  −  𝑐

𝑚
        ⟹   Inverse function 

 

      

       Ex. 6   Given:   𝒈(𝒙) =  𝟐𝒙 −   𝟒 
 

            (a)  Determine  𝒈−𝟏(𝒙)  =  … .. 
 

            (b)  Sketch  𝒈(𝒙)  and  𝒈−𝟏(𝒙) on the same system of axes. 
 

 
 

            (a)   𝒈(𝒙):   𝒚  =   𝟐𝒙  −   𝟒     ⟺           ∴     𝒈−𝟏(𝒙):       𝒙  =   𝟐𝒚  −   𝟒 
 

                                                                               ∴  𝟐𝒚  =   𝒙  +   𝟒 
 

                                                                               ∴     𝒚 =   
𝟏

𝟐
𝒙 +   𝟐        ∴   𝒈−𝟏(𝒙)  =   

𝟏

𝟐
𝒙 +   𝟐          

                                                                               
 

            (b)   For  𝒈(𝒙):     𝒙-intercept (𝒚 =  𝟎)                      𝒚-intercept  (𝒙  =   𝟎) 
 

                                   𝟐𝒙  −   𝟒  =   𝟎                                      𝒚  =   𝟐(𝟎)   −   𝟒 
 

                                      ∴        𝒙  =   𝟐                                  ∴  𝒚  =   −𝟒   
 

                                      ∴         (𝟐 ;  𝟎)                and                 (𝟎 ; −𝟒)  
 

   

                   For  𝒈−𝟏(𝒙):    𝒙 and 𝒚 of 𝒈(𝒙) swap place: 
 

                                           𝒚-intercept (𝒙 =  𝟎)                  𝒙-intercept  (𝒚  =   𝟎) 
 

                                       ∴  (𝟎 ;  𝟐)                     and                 (−𝟒 ;  𝟎)  
 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-3
0

1-1
-1

1

-2

-2

2

2

-3

Y

3

3

-4

-4

4

5

X

4

5-5

-5
g x( )

g x  ( )-1

y =
 x

𝑓(𝑥) =   𝑚𝑥 +  𝑐    
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A2.3.2  Graphs of inverses of the parabola:  
 

        See grade 11 Quadratic Functions for revision and background! 

 

 

     Ex. 7   Given:   𝒈(𝒙) =  𝟐𝒙𝟐  with  𝒙  ≥  𝟎 
 

            (a)  Determine  𝒈−𝟏(𝒙)  =  … .. 
 

            (b)  Sketch  𝒈(𝒙)  and  𝒈−𝟏(𝒙) on the same system of axes. 
  

            (c)  Write down the domain of 𝒈−𝟏(𝒙). 
 

 
  

            (a)   𝒈(𝒙):   𝒚  =  𝟐𝒙𝟐  with   𝒙  ≥  𝟎      ⟺     ∴     𝒈−𝟏(𝒙):     𝒙  =  𝟐𝒚𝟐  with   𝒚  ≥   𝟎       
 

                                                                                         ∴                    𝒚𝟐   =  
𝒙

𝟐
   

 

                                                                                         ∴                       𝒚 =   ±  √
𝒙

𝟐
         

 

                                                                                                            but     𝒚  ≥   𝟎       
 

                                                                                         ∴             𝒈−𝟏(𝒙)  =  +√
𝒙

𝟐
         

 

            (b)   For  𝒈(x):     Use a table, because the 𝒙-and-𝒚 intercepts and the turning point is (𝟎 ;  𝟎). 
        

𝒙 𝟎 𝟏 𝟐 𝒙  ≥   𝟎       

𝒚 𝟎 𝟐 𝟖  

   

                   For  𝒈−𝟏(𝒙):   𝒙 and 𝒚 of 𝒈(𝒙) swap place: 

 

𝒙 𝟎 𝟐 𝟖 

𝒚 𝟎 𝟏 𝟐 

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            (c)   𝐃𝒈−𝟏:     𝒙  ≥   𝟎       

 

 

Y

X

g( )x

g  ( )x-1

y 
= x

(2;1)

(1;2)
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A2.3.3 Graphs of inverses of the exponential function:  
 

        See grade 11 Exponential Functions for revision and background! 
  

 
    

        If the function                       is given, the inverse will obtained as follow: 
        

       𝑓(𝑥) =   𝑎𝑥   ⟺    y  =  𝑎𝑥 
 

      ∴  For the inverse, the 𝑥 and 𝑦 swap places:    𝑥 =   𝑎𝑦 
 

                                                                       ⟹   𝑦 =  log𝑎 𝑥                  [Make 𝑦 the subject!] 
 

      ∴  The inverse of an exponential function is a logarithmic function. 
 

 

 

 

       Ex. 8   Given:   𝒈(𝒙) =  𝟐𝒙 
 

            (a)  Determine  𝒈−𝟏(𝒙)  =  … .. 
 

            (b)  Sketch  𝒈(𝒙)  and  𝒈−𝟏(𝒙) on the same system of axes. 
 

            (c)  Write down the equation of the asymptote of 𝒈−𝟏(𝒙). 
 

 

            (a)   𝒈(𝒙):   𝒚  =   𝟐𝒙                 ⟺                 ∴     𝒈−𝟏(𝒙):     𝒙  =  𝟐𝒚      

 

                                                                                     ∴                       𝒚  =  𝐥𝐨𝐠𝟐 𝒙   

 

 

                                                                                     ∴             𝒈−𝟏(𝒙)  =   𝐥𝐨𝐠𝟐 𝒙       

 

            (b)   For  𝒈(𝒙):    
        

𝒙 −𝟏 𝟎 𝟏 

 

𝒚 
𝟏

𝟐
 𝟏 𝟐 

 

   

                   For  𝒈−𝟏(𝒙):    𝒙 and 𝒚 of 𝒈(𝒙) swap places: 

 

 

𝒙 
𝟏

𝟐
 𝟏 𝟐 

 

 𝒚 −𝟏 𝟎 𝟏 
 

 

            

            (c) Asymptote of 𝒈−𝟏(𝒙):   

 

                 𝒙 =   𝟎 

 

 

𝑓(𝑥) =   𝑎𝑥    

Y

X

g x( )

g x  ( )-1

y 
= x

(0;1)

(1;0)
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              Exercise 3:                                                           

 

(1) (a) Sketch:  𝑔(𝑥) = 𝑥2 + 1   for  𝑥 ≤ 0. 

 (b) Determine  𝑔−1 and write it in the form  𝑔−1(𝑥)  =  ……. 

 (c) Sketch  𝑔−1(𝑥)  on the same system of axes as 𝑔(𝑥). 

 (d) Write down the range of 𝑔−1(𝑥). 

  
 

 

(2)  Given:  ℎ(𝑥) = 2−𝑥 

 (a) Determine  ℎ−1 and write it in the form  ℎ−1(𝑥) =  ……. 

 (b) Sketch  ℎ  and  ℎ−1 on the same system of axes. 

 (c) Write down the domain of  ℎ−1(𝑥). 

 (d) If 𝑝 is the reflection of ℎ in the y-axis, determine the equation of 𝑝 and write it in  

  the form  𝑝(𝑥) =  …….    

 (e) Determine  𝑝−1 and write it in the form  𝑝−1(𝑥) =  ……. 

 

 

 

(3)  Given:  𝑓(𝑥) = 𝑎𝑥  and  𝑔(𝑥) 

  with   P(2 ;  9). 

 (a)  Determine the value of 𝑎. 

 (b) Give the coordinates of A. 

 (c) Determine the equation of 𝑔(𝑥), 

  if 𝑔(𝑥) is the mirror image of of 𝑓(𝑥) 

  in the line  𝑦 = 𝑥. 

 (d) Give the coordinates of B. 

 (e) For which values of x will 𝑔(𝑥) be defined? 

 (f) Write down the equation of the asymptote of 𝑔(𝑥). 

  
 

 

   

(4)  Given:  𝑡(𝑥) = 𝑎𝑥  and  𝑝(𝑥) = 𝑏𝑥2 

  met   A(−2 ;  4). 

 (a) Determine the values of 𝑎 and 𝑏. 

 (b) Write down the following:  𝑡−1(𝑥) = …… 

 (c)       Write down the following:  𝑝−1(𝑥) = …… 

 (d) Explain why 𝑝−1(𝑥) is not a function. 

 (e) Determine 𝑥 for which  𝑡−1(𝑥)  ≥ 0. 

 (f) Calculate:  𝑡−1(0,25)  +  𝑝(3) 
   

    

 

 

X

Y

.P(2 ; 9)

f

g

B

A
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 x

X

Y

t

p

A
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(5)  The graph of 𝑓(𝑥) = 𝑎𝑥 is sketched alongside.  

  The point  B(3; 8) lies on the graph of 𝑓. 

 (a)  Show that 𝑎 = 2. 

 (b) Write down the coordinates of A. 

 (c) Write down the equation of 𝑓−1(𝑥)  

  in the form  𝑓−1(𝑥)  = ⋯ 

 (d) Sketch the graph of 𝑓−1.  

  Show the 𝑥-intercept and ONE other point. 

 (e) For which values of 𝑥 will 𝑓−1(𝑥) = 𝑓(𝑥)? 

 (f) Write down the equation of 𝑔 

  if 𝑔 is the reflection of 𝑓 in the 𝑦-axis. 

 (g) Write down the equation of ℎ if ℎ is the reflection of 𝑓−1 in the 𝑥-axis. 

 (h) Are 𝑔 and ℎ one another’s inverse? Motivate your answer. 

 (i) For which values of 𝑥 will  𝑓−1(𝑥)  ≥  0? 

 (j) Calculate:  𝑓−1(2)  +  𝑓(−2) 

 

 

 

(6)  On the right is the graphs of  𝑓(𝑥) =  2𝑥   

       and 𝑔(𝑥) =  − (𝑥 −  1)2  +  𝑏, 

  with 𝑏 as a constant value. The graphs of  

  𝑓 and 𝑔 intersects on the 𝑦-axis at C. 

  D is the turning point of 𝑔. 

   

 

 

 (a)  Show that 𝑏 = 2.                                                                                                         

 (b) Write down the coordinates of the turning point of 𝑔.                                                      

 (c) Write down the equation of 𝑓−1(𝑥) in the form 𝑦 = …….                                

 (d) Sketch the graph of 𝑓−1 on the same graph as given above. 

  Show on your graph the 𝑥-intercept and the coordinates of one other point.                   

 (e) Write down the equation of ℎ if ℎ(𝑥) = 𝑔(𝑥 +  1) −  2.                          

 (f) How can the domain of ℎ be restricted so that ℎ−1 will be a function? 

 (g) Determine the maximum value of  22 −  (𝑥 − 1)2
.                     
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            REVISION FROM PAST PAPERS: 
 

                Exercise A:    

 

  Consider the function  𝑓(𝑥) = (
1

3
)

𝑥

  

 (1) Is 𝑓 an increasing or decreasing function? Give a reason for your answer. (2) 

 (2) Calculate 𝑓−1(𝑥) in the form  𝑦 =  …….. (2) 

 (3) Write down the equation of the asymptote of 𝑓(𝑥) − 5. (1) 

 (4) Describe the transformation of 𝑓 to 𝑔 if 𝑔(𝑥) = log3𝑥. (2) 

 

 

 

                 Exercise B:    

  
 The graphs of 𝑓(𝑥) = 2𝑥 −  8  and  𝑔(𝑥) = 𝑎𝑥2 +  𝑏𝑥 +  𝑐  

  sketched below. B and C(0 ;  4,5) are the 𝑦-intercepts of the graphs of 𝑓   

  and 𝑔 respectively. The two graphs intersect at A, which is the turning point of the  

  graph of 𝑔 and the 𝑥-intercept of the graphs of 𝑓 and 𝑔.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (1) Determine the coordinates of A and B. (4) 

 (2)  Write down the equation of the asymptote of graph 𝑓. (1) 

 (3) Determine the equation of  ℎ if ℎ(𝑥) = 𝑓(2𝑥) + 8. (2) 

 (4) Determine the equation of ℎ−1 in the form 𝑦  =  ….. (2) 

 (5) Write down the equation of 𝑝, if 𝑝 is the reflection of ℎ−1  in the 𝑥-axis. (1) 

 

 

(6) 

 

 

Calculate   ∑  𝑔(𝑘)  −   ∑  𝑔(𝑘).  Show ALL calculations. 

    

(4) 
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                 Exercise C:   

  
 Given:  𝑓(𝑥) =   3𝑥  

 (1) Determine an equation for 𝑓−1  in the form 𝑓−1 (x) = ... (1) 

 (2)  Sketch the graphs of 𝑓and 𝑓−1 , clearly showing ALL intercepts with the axes. (4) 

 (3) Write down the domain of 𝑓−1 . (2) 

 (4) For which values of 𝑥 will  𝑓(𝑥). 𝑓−1 (𝑥)  ≤  0? (2) 

 (5) Write down the range of ℎ(𝑥) = 3−𝑥  −  4. (2) 

 (6) Write down an equation for 𝑔 is the graph of 𝑔 is the image of the graph of   (2) 

  𝑓 after 𝑓 has been translated two units to the right and reflected about the 𝑥-axis.  

 

 

 

                 Exercise D:    

  
 The graph of 𝑓(𝑥) =  − √27𝑥   for 𝑥 ≥ 0 is sketched below.  

  The point P(3 ; −9) lies on the graph of 𝑓.  

   

 

 (1) Use the graph to determine the values of 𝑥 for which 𝑓(𝑥) ≥ −9. (2) 

 (2)  Write down the equation of 𝑓−1  in the form   𝑦 = ….. (3) 

  Include ALL restrictions.  

 (3) Sketch 𝑓−1 , the inverse of 𝑓. Indicate the intercept(s) with the axes and the  (3) 

  coordinates of ONE other point.  

 (4) Describe the transformation of 𝑓 to 𝑔 if 𝑔(𝑥) = √27𝑥   for  𝑥 ≥ 0. (1) 

 

 

 

 

Y

X

f

0

P(3 ; -9)
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                Exercise E:    

 
  

 The graph of  𝑓(𝑥) = (
1

3
)

𝑥

  

is sketched on the right.  
 

   

 

 (1) Write down the domain of 𝑓. (1) 

 (2)  Write down the equation of the asymptote of 𝑓. (1) 

 (3) Write down the equation of 𝑓−1  in the form    𝑦  =  …..  (2) 

 (4) Sketch the graph of 𝑓−1 . Indicate the 𝑥- intercept and the coordinates of ONE other point. (3) 

 (5) Write down the equation of the asymptote of 𝑓−1 (𝑥 + 2). (2) 

 (6) Prove that:  [𝑓(𝑥)]2 − [𝑓(−𝑥)]2  =  𝑓(2𝑥) −  𝑓(−2𝑥) for all values of 𝑥. (3) 

 

 

 

                 Exercise F:    

  
 The graphs of  𝑔(𝑥) = 𝑘𝑥 ,  

with  𝑘 > 0  and  𝑦 = 𝑔−1(𝑥) is  
 

  sketched on the right.   

The point (2 ;  36) is a point on 𝑔. 
 

   

 

 (1) Determine the value of 𝑘. (2) 

 (2)  Write down the equation of 𝑔−1  in the form  𝑦 =  …… (2) 

 (3) For which value(s) of 𝑥 will 𝑔−1(𝑥)  ≤  0? (2) 

 (4) Write down the domain of ℎ, for ℎ(𝑥) = 𝑔−1 (𝑥 −   3). (1) 

 (5) Sketch the graph of the inverse of  𝑦 = 1. (2) 

 (6) Is the inverse of 𝑦 = 1 a function? Motivate your answer. (2) 
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                 Exercise G:    

  
 Given the graph of 𝑔(𝑥) =  log1

3

 𝑥  

  A is the 𝑥-intercept of 𝑔.  

  P(
1

9
 ; 2) is a point on 𝑔.  

   

 

 (1) Write down the coordinates of A. (1) 

 (2)  Sketch the graph of 𝑔−1  and indicate intercepts as well the coordinates of ONE other   (3) 

  that will lie on the graph.  

 (3) Write down the domain of 𝑔−1 . (1) 

 

Y

X

g

 P(   ; 2)

A0
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